Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 648: 193-202, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37301144

RESUMO

High energy resource demand has led to the rapid development of hydrogen as a clean fuel through electrolytic water splitting. The exploration of high-performance and cost-effective electrocatalysts for water splitting is a challenging task to obtain renewable and clean energy. However, the sluggish kinetics of oxygen evolution reaction (OER) greatly hindered its application. Herein, a novel oxygen plasma-treated graphene quantum dots embedded Ni-Fe Prussian blue analogue (O-GQD-NiFe PBA) is proposed as a highly active electrocatalysts for OER. Furthermore, the defect induced by GQD can provide an abundant lattice mismatch in the matrix of NiFe PBA, which further facilitates faster electron transport and kinetic performance. After optimization, the as-assembled O-GQD-NiFe PBA exhibits excellent electrocatalytic performance towards OER with a low overpotential of 259 mV for reaching a current density of 10 mA cm-2 and impressive long-term stability for 100 h in an alkaline solution. This work broadens the scope of metal-organic frameworks (MOF) and high-functioning carbon composite as an active material for energy conversion systems.

2.
ACS Appl Mater Interfaces ; 13(50): 60125-60134, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34879195

RESUMO

A novel lead-containing metal-organic framework (Pb-MOF) is synthesized through postmetalation of MOF-525. Postmetalation renders lead ions bound with the organic linker of MOF-525, which can serve as nucleation points to promote perovskite crystallization. The introduction of lead postmetalated MOF-525 (Pb-MOF) as a scaffold layer between compact TiO2 (c-TiO2) layer and perovskite layer promotes perovskite crystal growth in enlarging crystal grain size with better crystallinity, hence decreasing defect sites in the perovskite layer. Postmetalation of MOF-525 with lead ions allows MAPbI3 to form a solid crystal structure to facilitate the charge separation between electron transport layer (ETL) and light-harvesting layer so as to resolve the issue of possible vacancies present in MOFs. As a result, the champion perovskite solar cell (PSC) with the introduction of Pb-MOF exhibits a power conversion efficiency (PCE) of 20.87% and better stability (86% PCE retention after 40 days), outperforming the pristine PSC (16.85% PCE, with 52% retention after 40 days) and MOF-525-introduced PSC (18.61% PCE, with 76% retention after 40 days).

3.
Mater Horiz ; 8(7): 2065-2078, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34846484

RESUMO

Soft robots provide compliant object-machine interactions, but they exhibit insufficient material stability, which restricts them from working in harsh environments. Herein, we developed a class of soft robotic skins based on two-dimensional materials (2DMs) and gelatin hydrogels, featuring skin-like multifunctionality (stretchability, thermoregulation, threat protection, and strain sensing). The 2DM-integrated hydrogel (2DM/H) skins enabled soft robots to execute designated missions in the presence of high levels of heat and various environmental threats while maintaining mild machine temperatures. Via adopting different 2DMs (graphene oxide (GO), montmorillonite (MMT), and titanium carbide (MXene)), the 2DM/H-protected robots were able to perform soft grasping in organic liquids (GO/H) and open fire (MMT/H), and in the presence of electromagnetic radiation and biocontamination (MXene/H). Through blending MXene nanosheets into gelatin, the MXene-blended hydrogel (M-H) skin became strain sensitive, and a GO/M-H gripper exhibited the high-level integration of skin-mimicking capabilities. Finally, we incorporated 2DM/H skins onto an origami-inspired walker robot and a soft batoid-like robot to execute vision-guided searching in fire and underwater locomotion/navigation in chemical spills.


Assuntos
Hidrogéis , Robótica , Gelatina , Pele
4.
ACS Appl Mater Interfaces ; 12(38): 42634-42643, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32845608

RESUMO

To obtain renewable and clean fuels, exploration of effective electrocatalysts is highly desirable due to the sluggish kinetics of water splitting. In this study, the oxygen plasma-activated hybrid structure of Ni-Fe Prussian blue analogue (PBA) interconnected by carbon nanotubes (O-CNT/NiFe) is reported as a highly effective electrocatalytic material for the oxygen evolution reaction (OER). The electrocatalytic performance is significantly influenced by different mass ratios of CNTs to Ni-Fe PBA. Benefiting from the conductive and oxygen plasma-activated CNTs as well as ordered and distributed metal sites in the framework, the optimized O-CNT/NiFe 1:18 exhibits a competitive overpotential of 279 mV at a current density of 10 mA cm-2 and a low Tafel slope of 42.8 mV dec-1 in 1.0 M KOH. Furthermore, the composite shows superior durability for at least 100 h. These results suggest that the O-CNT/NiFe 1:18 possesses promising potential as a highly active electrocatalyst.

5.
ACS Appl Mater Interfaces ; 11(28): 25090-25099, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31117438

RESUMO

In this study, a transition-metal selenide, vanadium diselenide (VSe2), with various morphologies was synthesized by employing a surfactant-free hydrothermal method under varied temperature conditions (190-220 °C). Although the physical properties of VSe2 have been studied before, only limited morphological change or application were explored. This study, for the first time, applied VSe2 as the electrocatalytic counter electrode (CE) in dye-sensitized solar cells (DSSCs) and showed an attractive cell efficiency. The mechanism of forming the tunable VSe2 morphologies is proposed. The evaluation of solar cell efficiency shows the correlation between morphology and electrocatalytic properties. It was further shown that VSe2-200 with the cauliflower-like morphology shows the highest cell performance of DSSC with an efficiency of 9.23 ± 0.07% under 1 sun irradiance, superior to that of the Pt-based DSSC (8.48 ± 0.08%). An electrochemical technique equipped with a rotating disk electrode system was introduced to confirm the high electrocatalytic performance with this particular morphology. The optimized VSe2 demonstrated good long-term stability with 78% retention after 500 cycles of the consecutive cyclic voltammetry, compared to 60% for the Pt CE. The control in morphology in vanadium diselenide synthesis and its usage in Pt-free CE DSSC have advanced the progress in electrochemistry.

6.
Acta Biomater ; 4(3): 717-24, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18321799

RESUMO

The aim of this study was to introduce Ag-Cu phase nanopowder as an additive to improve the corrosion behavior of dental amalgams. A novel Ag-Cu nanopowder was synthesized by the precipitation method. An amalgam alloy powder (World-Cap) was added and mixed with 5 wt.% and 10 wt.% of Ag-Cu nanopowders, respectively, to form experimental amalgam alloy powders. The original alloy powder was used as a control. Alloy powders were examined using X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy and electron probe microanalysis. Amalgam disk specimens of metallurgically prepared were tested in 0.9% NaCl solution using electrochemical methods. The changes in the corrosion potential and anodic polarization characteristics were determined. Corrosion potential data were analyzed statistically (n=3, analysis of variance, Tukey's test, p<0.05). The diameters of lamellar structure Ag-Cu nanoparticles were measured to be approximately 30 nm. The composition of the Ag-Cu nanoparticles determined by TEM-energy-dispersive spectroscopy was 56.28 at.% Ag-43.72 at.% Cu. A light-shaded phase was found mixing with dark Cu-Sn reaction particles in the reaction zones of Ag-Cu nanoparticle-doped amalgams. The Ag-Cu nanoparticle-doped amalgams exhibited zero current potentials more positive than the control (p<0.05) and no current peak was observed at -325mV that related to Ag-Hg phase and Cu6Sn5 phase in anodic polarization curves. The results indicated that the corrosion resistance of high-copper single-composition amalgam could be improved by Ag-Cu nanoparticle-doping.


Assuntos
Cobre/química , Amálgama Dentário/química , Eletroquímica , Nanopartículas/química , Prata/química , Nanopartículas/ultraestrutura , Potenciometria , Soluções , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...