Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 8: 584314, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33344448

RESUMO

The main stem cell niche for neurogenesis in the adult mammalian brain is the subventricular zone (SVZ) that extends along the cerebral lateral ventricles. We aimed at characterizing the initial molecular responses of the macaque monkey SVZ to transient, global cerebral ischemia. We microdissected tissue lining the anterior horn of the lateral ventricle (SVZa) from 7 day post-ischemic and sham-operated monkeys. Transcriptomics shows that in ischemic SVZa, 541 genes were upregulated and 488 genes were down-regulated. The transcription data encompassing the upregulated genes revealed a profile typical for quiescent stem cells and astrocytes. In the primate brain the SVZ is morphologically subdivided in distinct and separate ependymal and subependymal regions. The subependymal contains predominantly neural stem cells (NSC) and differentiated progenitors. To determine in which SVZa region ischemia had evoked transcriptional upregulation, sections through control and ischemic SVZa were analyzed by high-throughput in situ hybridization for a total of 150 upregulated genes shown in the www.monkey-niche.org image database. The majority of the differentially expressed genes mapped to the subependymal layers on the striatal or callosal aspect of the SVZa. Moreover, a substantial number of upregulated genes was expressed in the ependymal layer, implicating a contribution of the ependyma to stem cell biology. The transcriptome analysis yielded several novel gene markers for primate SVZa including the apelin receptor that is strongly expressed in the primate SVZa niche upon ischemic insult.

2.
Hepatology ; 72(1): 213-229, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31750554

RESUMO

BACKGROUND AND AIMS: Progressive familial intrahepatic cholestasis (PFIC) 6 has been associated with missense but not biallelic nonsense or frameshift mutations in MYO5B, encoding the motor protein myosin Vb (myoVb). This genotype-phenotype correlation and the mechanism through which MYO5B mutations give rise to PFIC are not understood. The aim of this study was to determine whether the loss of myoVb or expression of patient-specific myoVb mutants can be causally related to defects in canalicular protein localization and, if so, through which mechanism. APPROACH AND RESULTS: We demonstrate that the cholestasis-associated substitution of the proline at amino acid position 600 in the myoVb protein to a leucine (P660L) caused the intracellular accumulation of bile canalicular proteins in vesicular compartments. Remarkably, the knockout of MYO5B in vitro and in vivo produced no canalicular localization defects. In contrast, the expression of myoVb mutants consisting of only the tail domain phenocopied the effects of the Myo5b-P660L mutation. Using additional myoVb and rab11a mutants, we demonstrate that motor domain-deficient myoVb inhibited the formation of specialized apical recycling endosomes and that its disrupting effect on the localization of canalicular proteins was dependent on its interaction with active rab11a and occurred at the trans-Golgi Network/recycling endosome interface. CONCLUSIONS: Our results reveal a mechanism through which MYO5B motor domain mutations can cause the mislocalization of canalicular proteins in hepatocytes which, unexpectedly, does not involve myoVb loss-of-function but, as we propose, a rab11a-mediated gain-of-toxic function. The results explain why biallelic MYO5B mutations that affect the motor domain but not those that eliminate myoVb expression are associated with PFIC6.


Assuntos
Colestase Intra-Hepática/genética , Mutação , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , Genótipo , Humanos , Células Tumorais Cultivadas
3.
J Cell Sci ; 127(Pt 5): 1007-17, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24413175

RESUMO

Microvilli at the apical surface of enterocytes allow the efficient absorption of nutrients in the intestine. Ezrin activation by its phosphorylation at T567 is important for microvilli development, but how such ezrin phosphorylation is controlled is not well understood. We demonstrate that a subset of kinases that phosphorylate ezrin closely co-distributes with apical recycling endosome marker Rab11a in the subapical domain. Expression of dominant-negative Rab11a mutant or depletion of the Rab11a-binding motor protein myosin Vb prevents the subapical enrichment of Rab11a and these kinases and inhibits ezrin phosphorylation and microvilli development, without affecting the polarized distribution of ezrin itself. We observe a similar loss of the subapical enrichment of Rab11a and the kinases and reduced phosphorylation of ezrin in microvillus inclusion disease, which is associated with MYO5B mutations, intestinal microvilli atrophy and malabsorption. Thus, part of the machinery for ezrin activation depends on recycling endosomes controlled by myosin Vb and Rab11a which, we propose, might act as subapical signaling platforms that enterocytes use to regulate development of microvilli and maintain human intestinal function.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Enterócitos/metabolismo , Cadeias Pesadas de Miosina/fisiologia , Miosina Tipo V/fisiologia , Processamento de Proteína Pós-Traducional , Proteínas rab de Ligação ao GTP/fisiologia , Linhagem Celular Tumoral , Polaridade Celular , Códon sem Sentido , Endossomos/metabolismo , Células HEK293 , Humanos , Isoenzimas/metabolismo , Síndromes de Malabsorção/genética , Microvilosidades/genética , Microvilosidades/metabolismo , Microvilosidades/patologia , Mucolipidoses/genética , Fosforilação , Proteína Quinase C/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico
4.
PLoS One ; 8(2): e54649, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23460781

RESUMO

Loss-of-function mutations in CLMP have been found in patients with Congenital Short Bowel Syndrome (CSBS), suggesting that its encoded protein plays a major role in intestinal development. CLMP is a membrane protein that co-localizes with tight junction proteins, but its function is largely unknown. We expressed wild-type (WT)-CLMP and a mutant-CLMP (associated with CSBS) in human intestinal epithelial T84 cells that, as we show here, do not produce endogenous CLMP. We investigated the effects of WT-CLMP and mutant-CLMP proteins on key cellular processes that are important for intestinal epithelial development, including migration, proliferation, viability and transepithelial resistance. Our data showed that expression of WT-CLMP or mutant-CLMP does not affect any of these processes. Moreover, our aggregation assays in CHO cells show that CLMP does not act as a strong adhesion molecule. Thus, our data suggest that, in the in vitro model systems we used, the key processes involved in intestinal epithelial development appear to be unaffected by WT-CLMP or mutant-CLMP. Further research is needed to determine the role of CLMP in the development of the intestine.


Assuntos
Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Epitélio/crescimento & desenvolvimento , Intestinos/crescimento & desenvolvimento , Animais , Células CHO , Moléculas de Adesão Celular/metabolismo , Agregação Celular , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Cricetinae , Cricetulus , Impedância Elétrica , Epitélio/metabolismo , Humanos , Proteínas Mutantes/metabolismo , Transdução Genética
5.
BMC Cell Biol ; 13: 26, 2012 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-23107381

RESUMO

BACKGROUND: The Dystrophin Glycoprotein Complex (DGC) is at the center of significant inheritable diseases, such as muscular dystrophies that can be fatal and impair neuronal function in addition to muscle degeneration. Recent evidence has shown that it can control cellular homeostasis and work via Dystrophin signaling to regulate microRNA gene expression which implies that disease phenotypes hide an entourage of regulatory and homeostatic anomalies. Uncovering these hidden processes could shed new light on the importance of proper DGC function for an organism's overall welfare and bring forth new ideas for treatments. RESULTS: To better understand a role for the DGC in these processes, we used the genetically advantageous Drosophila muscular dystrophy model to conduct a whole animal microarray screen. Since we have recently found that dystrophic symptoms can be caused by stress even in wild type animals and are enhanced in mutants, we screened stressed animals for microRNA misregulation as well. We were able to define microRNAs misregulated due to stress and/or dystrophy. Our results support the hypothesis that there is a Dystrophin and Dystroglycan dependent circuitry of processes linking stress response, dystrophic conditions and cellular signaling and that microRNAs play an important role in this network. Verification of a subset of our results was conducted via q-PCR and revealed that miR-956, miR-980 and miR-252 are regulated via a Dystroglycan-Dystrophin-Syntrophin dependent pathway. CONCLUSIONS: The results presented in this study support the hypothesis that there is a Dystrophin and Dystroglycan dependent circuitry of processes that includes regulation of microRNAs. Dystrophin signaling has already been found to occur in mammalian musculature; however, our data reveals that this regulation is evolutionarily conserved and also present in at least neuronal tissues. Our data imply that Dystroglycan-Dystrophin-Syntrophin signaling through control of multiple microRNAs is involved in highly managed regulation of gene expression required to adapt cellular homeostasis that is compromised under stress and dystrophic conditions.


Assuntos
Proteínas de Drosophila/metabolismo , Distroglicanas/metabolismo , Proteínas Associadas à Distrofina/metabolismo , Distrofina/metabolismo , MicroRNAs/metabolismo , Animais , Drosophila/metabolismo , Distrofias Musculares/metabolismo , Distrofias Musculares/patologia , Transdução de Sinais
6.
Gastroenterology ; 142(3): 453-462.e3, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22155368

RESUMO

BACKGROUND & AIMS: Short-bowel syndrome usually results from surgical resection of the small intestine for diseases such as intestinal atresias, volvulus, and necrotizing enterocolitis. Patients with congenital short-bowel syndrome (CSBS) are born with a substantial shortening of the small intestine, to a mean length of 50 cm, compared with a normal length at birth of 190-280 cm. They also are born with intestinal malrotation. Because CSBS occurs in many consanguineous families, it is considered to be an autosomal-recessive disorder. We aimed to identify and characterize the genetic factor causing CSBS. METHODS: We performed homozygosity mapping using 610,000 K single-nucleotide polymorphism arrays to analyze the genomes of 5 patients with CSBS. After identifying a gene causing the disease, we determined its expression pattern in human embryos. We also overexpressed forms of the gene product that were and were not associated with CSBS in Chinese Hamster Ovary and T84 cells and generated a zebrafish model of the disease. RESULTS: We identified loss-of-function mutations in Coxsackie- and adenovirus receptor-like membrane protein (CLMP) in CSBS patients. CLMP is a tight-junction-associated protein that is expressed in the intestine of human embryos throughout development. Mutations in CLMP prevented its normal localization to the cell membrane. Knock-down experiments in zebrafish resulted in general developmental defects, including shortening of the intestine and the absence of goblet cells. Because goblet cells are characteristic for the midintestine in zebrafish, which resembles the small intestine in human beings, the zebrafish model mimics CSBS. CONCLUSIONS: Loss-of-function mutations in CLMP cause CSBS in human beings, likely by interfering with tight-junction formation, which disrupts intestinal development. Furthermore, we developed a zebrafish model of CSBS.


Assuntos
Intestino Delgado/anormalidades , Mutação de Sentido Incorreto , Receptores Virais/genética , Síndrome do Intestino Curto/genética , Adolescente , Adulto , Animais , Células CHO , Criança , Pré-Escolar , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus , Cricetinae , Cricetulus , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença , Heterozigoto , Homozigoto , Humanos , Lactente , Recém-Nascido , Intestino Delgado/metabolismo , Masculino , Morfogênese , Fenótipo , Polimorfismo de Nucleotídeo Único , Receptores Virais/metabolismo , Síndrome do Intestino Curto/embriologia , Síndrome do Intestino Curto/metabolismo , Síndrome do Intestino Curto/patologia , Transfecção , Adulto Jovem , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
7.
Chem Biol ; 16(9): 951-60, 2009 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-19778723

RESUMO

gamma-Butyrolactone bacterial hormones regulate antibiotic production and morphological differentiation in Streptomyces species. One gamma-butyrolactone, SCB1, has been previously characterized in Streptomyces coelicolor. Here we report the characterization of two additional gamma-butyrolactones, named SCB2 (2-[1'-hydroxyoctyl]-3-hydroxymethylbutanolide) and SCB3 (2-[1'-hydroxy-6'-methyloctyl]-3-hydroxymethylbutanolide), possessing an antibiotic stimulatory activity. To elucidate the specificity determinants of these ligands for the receptor protein, ScbR, 30 chemically synthesized gamma-butyrolactone analogs were tested by utilizing the release of ScbR from DNA upon binding to a gamma-butyrolactone, which can be detected by kanamycin resistance. The butyrolactone detection method developed here revealed that ScbR shows preference toward a ligand possessing a 7-10 carbon C-2 side chain, a C-1'-beta-hydroxyl group, and a C-6'-methyl branch that coincides with SCB3. Moreover, this method was successfully used to screen for potential gamma-butyrolactone producers from commercial-antibiotic-producing Streptomyces.


Assuntos
4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacologia , Streptomyces coelicolor/química , 4-Butirolactona/química , 4-Butirolactona/isolamento & purificação , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Resistência a Canamicina , Ligantes , Streptomyces coelicolor/metabolismo , Relação Estrutura-Atividade
8.
Methods Enzymol ; 458: 143-57, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19374982

RESUMO

Antibiotic production is regulated by numerous signals, including the so-called bacterial hormones found in antibiotic producing organisms such as Streptomyces. These signals, the gamma-butyrolactones, are produced in very small quantities, which has hindered their structural elucidation and made it difficult to assess whether they are being produced. In this chapter, we describe a rapid small-scale extraction method from either solid or liquid cultures in scales of one plate or 50 ml of medium. Also described is a bioassay to detect the gamma-butyrolactones by determining either the production of pigmented antibiotic of Streptomyces coelicolor or kanamycin resistant growth on addition of the gamma-butyrolactones. We also describe some insights into the identification of the gamma-butyrolactone receptor and its targets and also the gel retardation conditions with three differently labeled probes.


Assuntos
4-Butirolactona/biossíntese , Streptomyces/metabolismo , 4-Butirolactona/farmacologia , Ensaio de Desvio de Mobilidade Eletroforética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/genética , Canamicina/farmacologia , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Streptomyces/efeitos dos fármacos , Streptomyces/genética
9.
Antonie Van Leeuwenhoek ; 95(3): 189-206, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19151927

RESUMO

Two component sensor-response regulator systems (TCSs) are very common in the genomes of the Streptomyces species that have been fully sequenced to date. It has been suggested that this large number is an evolutionary response to the variable environment that Streptomyces encounter in soil. Notwithstanding this, TCSs are also more common in the sequenced genomes of other Actinomycetales when these are compared to the genomes of most other eubacteria. In this study, we have used DNA/DNA genome microarray analysis to compare 14 Streptomyces species and one closely related genus to Streptomyces coelicolor in order to identify a core group of such systems. This core group is compared to the syntenous and non-syntenous TCSs present in the genome sequences of other Actinomycetales in order to separate the systems into those present in Actinomycetales in general, the Streptomyces specific systems and the species specific systems. Horizontal transfer does not seem to play a very important role in the evolution of the TCS complement analyzed in this study. However, cognate pairs do not necessarily seem to evolve at the same pace, which may indicate the evolutionary responses to environmental variation may be reflected differently in sequence changes within the two components of the TCSs. The overall analysis allowed subclassification of the orphan TCSs and the TCS cognate pairs and identification of possible targets for further study using gene knockouts, gene overexpression, reporter genes and yeast two hybrid analysis.


Assuntos
DNA Bacteriano/genética , Análise em Microsséries , Transdução de Sinais , Streptomyces/genética , Análise por Conglomerados , Streptomyces/classificação
10.
Antonie Van Leeuwenhoek ; 93(1-2): 1-25, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17588127

RESUMO

DNA/DNA microarray hybridization was used to compare the genome content of Streptomyces avermitilis, Streptomyces cattleya, Streptomyces maritimus and Kitasatospora aureofaciens with that of Streptomyces coelicolor A3(2). The array data showed an about 93% agreement with the genome sequence data available for S. avermitilis and also showed a number of trends in the genome structure for Streptomyces and closely related Kitasatospora. A core central region was well conserved, which might be predicted from previous research and this was linked to a low degree of gene conservation in the terminal regions of the linear chromosome across all four species. Between these regions there are two areas of intermediate gene conservation by microarray analysis where gene synteny is still detectable in S. avermitilis. Nonetheless, a range of conserved genes could be identified within the terminal regions. Variation in the genes involved in differentiation, transcription, DNA replication, etc. provides interesting insights into which genes in these categories are generally conserved and which are not. The results also provide target priorities for possible gene knockouts in a group of bacteria with a very large numbers of genes with unknown functions compared to most bacterial species.


Assuntos
Genômica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Streptomyces coelicolor/genética , Streptomyces/genética , Genoma Bacteriano , Genótipo , RNA Ribossômico 16S/genética
11.
Microbiology (Reading) ; 153(Pt 5): 1394-1404, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17464053

RESUMO

gamma-Butyrolactones play an important role in the regulation of antibiotic production and differentiation in Streptomyces. However the biosynthetic pathway for these small molecules has not yet been determined, and in vitro synthesis has not been reported. The function of the AfsA family of proteins, originally proposed to catalyse gamma-butyrolactone synthesis, has been in debate. To clarify the function of the AfsA family, and to understand the synthesis of the gamma-butyrolactones, we performed in silico analysis of this protein family. AfsA proteins consist of two divergent domains, each of which has similarity to the fatty acid synthesis enzymes FabA and FabZ. The two predicted active sites in ScbA, which is the AfsA orthologue found in Streptomyces coelicolor, were mutated, and gamma-butyrolactone biosynthesis was abolished in all four constructed mutants, strongly suggesting that ScbA has enzymic activity.


Assuntos
4-Butirolactona/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ácido Graxo Sintases/genética , Streptomyces coelicolor/genética , Sequência de Aminoácidos , Sítios de Ligação/genética , Biologia Computacional , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Streptomyces coelicolor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...