Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 221: 623-633, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36099992

RESUMO

A variety of anticancer activities have been established for fucoidan from brown algae, whereas whether cancer stem cells (CSCs) are inhibited by sulfated polysaccharides is unexplored. In this study, fucoidan extracted from Sargassum hemiphyllum was showed heat stable and might tolerate 140 °C treatment. Fucoidan did not exhibit cytotoxicity in 5637 and T24 bladder cancer cells. After fucoidan treatment, the stress fibers were aggregated into thick and abundant underneath the plasma membrane and getting around the cells, and the structure of F-actin showed a remarkable change in the filopodial protrusion in T24 and 5637 cells. Using culture inserts, transwell assays and time lapse recordings showed that fucoidan inhibited cell migration. In the epithelial-mesenchymal transition (EMT), fucoidan downregulated the expression of vimentin, a mesenchymal marker, and upregulated the expression of E-cadherin, an epithelial marker. Additionally, the transcription levels of Snail, Slug, Twist1, Twist2, MMP2 and MMP9 were significantly decreased by fucoidan, indicating EMT suppression. CSCs are implicated in tumor initiation, metastatic spread, drug resistance and tumor recurrence. Our results showed that fucoidan inhibited stemness gene expression and sphere formation in bladder CSCs. For the first time, our findings demonstrated that fucoidan inhibits CSC formation and provides evidence as potential anticancer therapy.


Assuntos
Sargassum , Neoplasias da Bexiga Urinária , Humanos , Transição Epitelial-Mesenquimal , Sargassum/química , Neoplasias da Bexiga Urinária/metabolismo , Bexiga Urinária , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/patologia , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo
2.
Microb Biotechnol ; 12(5): 920-931, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31199579

RESUMO

Polyketides are important secondary metabolites, many of which exhibit potent pharmacological applications. Biosynthesis of polyketides is carried out by a single polyketide synthase (PKS) or multiple PKSs in successive elongations of enzyme-bound intermediates related to fatty acid biosynthesis. The polyketide gene PKS306 from Pseudallescheria boydii NTOU2362 containing domains of ketosynthase (KS), acyltransferase (AT), dehydratase (DH), acyl carrier protein (ACP) and methyltransferase (MT) was cloned in an attempt to produce novel chemical compounds, and this PKS harbouring green fluorescent protein (GFP) was expressed in Saccharomyces cerevisiae. Although fluorescence of GFP and fusion protein analysed by anti-GFP antibody were observed, no novel compound was detected. 6-methylsalicylic acid synthase (6MSAS) was then used as a template and engineered with PKS306 by combinatorial fusion. The chimeric PKS containing domains of KS, AT, DH and ketoreductase (KR) from 6MSAS with ACP and MT from PKS306 demonstrated biosynthesis of a novel compound. The compound was identified with a deduced chemical formula of C7 H10 O3 , and the chemical structure was named as 2-hydroxy-2-(propan-2-yl) cyclobutane-1,3-dione. The novel compound synthesized by the chimeric PKS in this study demonstrates the feasibility of combinatorial fusion of PKS genes to produce novel polyketides.


Assuntos
Proteína de Transporte de Acila/metabolismo , Aciltransferases/metabolismo , Ligases/metabolismo , Metiltransferases/metabolismo , Complexos Multienzimáticos/metabolismo , Oxirredutases/metabolismo , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Pseudallescheria/enzimologia , Proteínas Recombinantes de Fusão/metabolismo , Proteína de Transporte de Acila/genética , Aciltransferases/genética , Clonagem Molecular , Expressão Gênica , Ligases/genética , Metiltransferases/genética , Complexos Multienzimáticos/genética , Oxirredutases/genética , Policetídeo Sintases/genética , Pseudallescheria/genética , Proteínas Recombinantes de Fusão/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
3.
Neurosci Lett ; 628: 186-93, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27345388

RESUMO

Proinflammatory responses eliciting the microglial production of cytokines and nitric oxide (NO) have been reported to play a crucial role in the acute and chronic pathogenic effects of neurodegeneration. Chemical inhibitors of cyclin-dependent kinases (CDKs) may prevent the progression of neurodegeneration by both limiting cell proliferation and reducing cell death. However, the mechanism underlying the protective effect of CDK inhibitors on microglia remains unexplored. In this study, we found that olomoucine, a CDK inhibitor, alleviated lipopolysaccharide (LPS)-induced BV2 microglial cell death by reducing the generation of NO and inhibiting the gene expression of proinflammatory cytokines. In addition, olomoucine reduced inducible NO synthase promoter activity and alleviated NF-κB- and E2F-mediated transcriptional activation. NO-induced cell death involved mitochondrial disruptions such as cytochrome c release and loss of mitochondrial membrane potential, and pretreatment with olomoucine prior to NO exposure reduced these disruptions. Microarray analysis revealed that olomoucine treatment induced prominent down-regulation of Bcl2/adenovirus E1B 19-kDa-interacting protein 3 (BNIP3), a pro-apoptotic Bcl-2 family protein that is involved in mitochondrial disruption. As BNIP3 knock-down significantly increased the viability of LPS- and NO-treated BV2 cells, we conclude that olomoucine may protect cells by limiting proinflammatory responses, thereby reducing NO generation. Simultaneously, down-regulation of BNIP3 prevents NO stimulation from inducing mitochondrial disruption.


Assuntos
Apoptose/efeitos dos fármacos , Quinases Ciclina-Dependentes/antagonistas & inibidores , Inflamação/metabolismo , Cinetina/administração & dosagem , Proteínas de Membrana/metabolismo , Microglia/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Óxido Nítrico/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Regulação para Baixo , Fatores de Transcrição E2F/metabolismo , Inibidores Enzimáticos/administração & dosagem , Inflamação/induzido quimicamente , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Camundongos , Microglia/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo
4.
J Am Soc Nephrol ; 25(7): 1486-95, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24511119

RESUMO

Galectin-1, a ß-galactoside-binding lectin, is involved in many physiologic and pathologic processes, including cell adhesion, differentiation, angiogenesis, and tumor progression. However, the role of galectin-1 in kidney cancer remains elusive. This study evaluated the role of galectin-1 in the progression and clinical prognosis of renal cell carcinoma. We found significant overexpression of galectin-1 in both kidney cancer cell lines and metastatic tissue specimens from patients with renal cell carcinoma. Knockdown of galectin-1 gene expression in renal cancer cell lines reduced cell invasion, clonogenic ability, and epithelial-mesenchymal transition in vitro; reduced tumor outgrowth in vivo; and inhibited the angiogenesis-inducing activity of these cells in vitro and in vivo. Galectin-1 knockdown decreased CXCR4 expression levels in kidney cancer cells, and restoration of CXCR4 expression in galectin-1-silenced cells rescued cell motility and clonogenic ability. Additional studies suggested that galectin-1 induced CXCR4 expression through activation of nuclear factor-κB (NF-κB). Analysis of patient specimens confirmed the clinical significance and positive correlation between galectin-1 and CXCR4 expression levels and revealed concomitant overexpression of galectin-1 and CXCR4 associated adversely with overall and disease-free survival. Our findings suggest that galectin-1 promotes tumor progression through upregulation of CXCR4 via NF-κB. The coordinated upregulation of galectin-1 and CXCR4 may be a novel prognostic factor for survival in patients with renal cell carcinoma and the galectin-1-CXCR4 axis may serve as a therapeutic target in this disease.


Assuntos
Carcinoma de Células Renais/mortalidade , Carcinoma de Células Renais/patologia , Galectina 1/fisiologia , Neoplasias Renais/mortalidade , Neoplasias Renais/patologia , Receptores CXCR4/fisiologia , Regulação para Cima , Progressão da Doença , Humanos , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...