Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Psychiatry ; 14(1): 68, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296969

RESUMO

Tuberous sclerosis complex (TSC) is a genetic disease that causes benign tumors and dysfunctions in many organs, including the brain. Aside from the brain malformations, many individuals with TSC exhibit neuropsychiatric symptoms. Among these symptoms, autism spectrum disorder (ASD) is one of the most common co-morbidities, affecting up to 60% of the population. Past neuroimaging studies strongly suggested that the impairments in brain connectivity contribute to ASD, whether or not TSC-related. Specifically, the tract-based diffusion tensor imaging (DTI) analysis provides information on the fiber integrity and has been used to study the neuropathological changes in the white matter of TSC patients with ASD symptoms. In our previous study, curcumin, a diet-derived mTOR inhibitor has been shown to effectively mitigate learning and memory deficits and anxiety-like behavior in Tsc2+/- mice via inhibiting astroglial proliferation. Recently, gut microbiota, which is greatly influenced by the diet, has been considered to play an important role in regulating several components of the central nervous system, including glial functions. In this study, we showed that the abnormal social behavior in the Tsc2+/- mice can be ameliorated by the dietary curcumin treatment. Second, using tract-based DTI analysis, we found that the Tsc2+/- mice exhibited altered fractional anisotropy, axial and radial diffusivities of axonal bundles connecting the prefrontal cortex, nucleus accumbens, hypothalamus, and amygdala, indicating a decreased brain network. Third, the dietary curcumin treatment improved the DTI metrics, in accordance with changes in the gut microbiota composition. At the bacterial phylum level, we showed that the abundances of Actinobacteria, Verrucomicrobia, and Tenericutes were significantly correlated with the DTI metrics FA, AD, and RD, respectively. Finally, we revealed that the expression of myelin-associated proteins, myelin bassic protein (MBP) and proteolipid protein (PLP) was increased after the treatment. Overall, we showed a strong correlation between structural connectivity alterations and social behavioral deficits, as well as the diet-dependent changes in gut microbiota composition.


Assuntos
Transtorno do Espectro Autista , Curcumina , Microbioma Gastrointestinal , Esclerose Tuberosa , Humanos , Camundongos , Animais , Imagem de Tensor de Difusão/métodos , Esclerose Tuberosa/diagnóstico por imagem , Esclerose Tuberosa/complicações , Esclerose Tuberosa/patologia , Curcumina/farmacologia , Encéfalo
2.
Brain Pathol ; 31(1): 4-19, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32530070

RESUMO

Tuberous sclerosis complex (TSC) is a rare hereditary disease, which results from the mutation of either TSC1 or TSC2, and its clinical features include benign tumors and dysfunctions in numerous organs, including the brain. Many individuals with TSC manifest neuropsychiatric symptoms, such as learning impairments, cognitive deficits and anxiety. Current pharmacological treatment for TSC is the use of mTOR inhibitors. However, they are not effective in treating neuropsychiatric symptoms. We previously used curcumin, a diet-derived mTOR inhibitor, which possesses both anti-inflammatory and antiproliferative properties, to improve learning and memory deficits in Tsc2+/- mice. Diffusion tensor imaging (DTI) provides microstructural information in brain tissue and has been used to study the neuropathological changes in TSC. In this study, we confirmed that the impaired recognition memory and increased anxiety-like behavior in Tsc2+/- mice can be reversed by curcumin treatment. Second, we found altered fractional anisotropy and mean diffusivity in the anterior cingulate cortex and the hippocampus of the Tsc2+/- mice, which may indicate altered circuitry. Finally, the mTOR complex 1 hyperactivity was found in the cortex and hippocampus, coinciding with abnormal cortical myelination and increased glial fibrillary acidic protein expression in the hippocampal CA1 of Tsc2+/- mice, both of which can be rescued with curcumin treatment. Overall, DTI is sensitive to the subtle alterations that cannot be detected by conventional imaging, suggesting that noninvasive DTI may be suitable for longitudinally monitoring the in vivo neuropathology associated with the neuropsychiatric symptoms in TSC, thereby facilitating future clinical trials of pharmacological treatments.


Assuntos
Encéfalo/patologia , Imagem de Tensor de Difusão/métodos , Neuroimagem/métodos , Esclerose Tuberosa/complicações , Esclerose Tuberosa/patologia , Animais , Modelos Animais de Doenças , Endofenótipos , Camundongos
3.
Biochem Biophys Res Commun ; 533(4): 1477-1483, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33333713

RESUMO

Development of the mammalian central nervous system is an important process, which is accomplished through precise regulations of many different genes. Zinc finger protein 179 (Znf179) is one of the essential genes that plays a critical role in neuronal differentiation. In our previous study, Znf179 knockout mice displayed brain malformation and impaired brain functions. We have also previously shown that Znf179 involves in cell cycle regulation, but the regulatory mechanism of Znf179 expression is not yet fully characterized. Herein, we identified that Purα is an essential factor for the promotor activity of Znf179. We also showed concurrent expression of Znf179 and Purα during neuronal differentiation. We also found that overexpression of Purα increased Znf179 expression in neuronal differentiated P19 cells. Through its direct binding to Znf179, as shown using DAPA, Purα upregulates Znf179 expression, suggesting that Purα is important for the regulation of Znf179 expression during neuronal differentiation. Our data indicated that Purα is involved in the transcriptional regulation of Znf179 gene during neuronal differentiation, and is indispensable during the brain development.


Assuntos
Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas do Tecido Nervoso/genética , Neurônios/fisiologia , Animais , Proteínas de Ligação a DNA/metabolismo , Luciferases/genética , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/fisiologia , Regiões Promotoras Genéticas , Transcrição Gênica
4.
Front Neurosci ; 13: 1269, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038122

RESUMO

Deep brain stimulation (DBS) is a well-established technique for the treatment of movement and psychiatric disorders through the modulation of neural oscillatory activity and synaptic plasticity. The central thalamus (CT) has been indicated as a potential target for stimulation to enhance memory. However, the mechanisms underlying local field potential (LFP) oscillations and memory enhancement by CT-DBS remain unknown. In this study, we used CT-DBS to investigate the mechanisms underlying the changes in oscillatory communication between the CT and hippocampus, both of which are involved in spatial working memory. Local field potentials (LFPs) were recorded from microelectrode array implanted in the CT, dentate gyrus, cornu ammonis (CA) region 1, and CA region 3. Functional connectivity (FC) strength was assessed by LFP-LFP coherence calculations for these brain regions. In addition, a T-maze behavioral task using a rat model was performed to assess the performance of spatial working memory. In DBS group, our results revealed that theta oscillations significantly increased in the CT and hippocampus compared with that in sham controls. As indicated by coherence, the FC between the CT and hippocampus significantly increased in the theta band after CT-DBS. Moreover, Western blotting showed that the protein expressions of the dopamine D1 and α4-nicotinic acetylcholine receptors were enhanced, whereas that of the dopamine D2 receptor decreased in the DBS group. In conclusion, the use of CT-DBS resulted in elevated theta oscillations, increased FC between the CT and hippocampus, and altered synaptic plasticity in the hippocampus, suggesting that CT-DBS is an effective approach for improving spatial working memory.

5.
PLoS One ; 9(3): e93303, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24667656

RESUMO

Serine/threonine kinase 31 (STK31) is one of the novel cancer/testis antigens for which its biological functions remain largely unclear. Here, we demonstrate that STK31 is overexpressed in many human colorectal cancer cell lines and tissues. STK31 co-localizes with pericentrin in the centrosomal region throughout all phases of the cell cycle. Interestingly, when cells undergo mitosis, STK31 also localizes to the centromeres, central spindle, and midbody. This localization behavior is similar to that of chromosomal passenger proteins, which are known to be the important players of the spindle assembly checkpoint. The expression of STK31 is cell cycle-dependent through the regulation of a putative D-box near its C-terminal region. Ectopically-expressed STK31-GFP increases cell migration and invasive ability without altering the proliferation rate of cancer cells, whereas the knockdown expression of endogenous STK31 by lentivirus-derived shRNA results in microtubule assembly defects that prolong the duration of mitosis and lead to apoptosis. Taken together, our results suggest that the aberrant expression of STK31 contributes to tumorigenicity in somatic cancer cells. STK31 might therefore act as a potential therapeutic target in human somatic cancers.


Assuntos
Carcinogênese , Ciclo Celular , Neoplasias Epiteliais e Glandulares/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Centrossomo/metabolismo , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mitose , Invasividade Neoplásica , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...