Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol ; 34(12): 1320-1328, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31486215

RESUMO

Carthamus tinctorius L. (Compositae) is used in Chinese medicine to treat heart disease and inflammation. In our previous study, we found that C. tinctorius L. inhibited lipopolysaccharides (LPS)-induced tumor necrosis factor-alpha (TNF-α) activation, JNK expression, and apoptosis in H9c2 cardiomyoblast cells. The present study was performed to investigate the protective effect of C. tinctorius extract (CTF) on LPS-challenged H9c2 myocardioblast cell and to explore the possible underlying mechanism. Cell viability assay showed that LPS treatment decreased the cell viability of H9c2 cell, whereas CTF treatment reversed LPS cytotoxicity in a dose-dependent manner, especially in the LPS + CTF 25 (µg/mL) group. LPS treatment-induced apoptosis was determined by transferase-mediated dUTP nick end labeling assay, and by Western blot. LPS-induced apoptotic bodies were decreased following CTF treatment. Expression of TNF-α, FAS-L, FAS, FADD, caspase-8, BID, and t-BID was significantly increased in LPS-treated H9c2 cells. In contrast, it was significantly suppressed by the administration of CTF extract. In addition, CTF treatment activates antiapoptotic proteins, Bcl-2 and p-Bad, and downregulates Bax, cytochrome-c, caspase-9, caspase-3, and apoptosis-inducing factor expression. Furthermore, CTF exerted cytoprotective effects by activating insulin-like growth factor-I (IGF-I) signaling pathway leading to downregulation of the apoptotic proteins involved in FAS death receptor pathway. In addition, AG1024 and IGF-I receptor (IGF-IR) inhibitor and siRNA silencing reverses the effect of CTF implying that CTF functions through the IGF-IR pathway to inhibit LPS-induced H9c2 apoptosis. These results suggest that treatment with CTF extract prevented the LPS-induced apoptotic response through IGF-I pathway.


Assuntos
Apoptose/efeitos dos fármacos , Carthamus tinctorius/química , Extratos Vegetais/farmacologia , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor fas/metabolismo , Animais , Carthamus tinctorius/metabolismo , Caspase 3/metabolismo , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Extratos Vegetais/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Fator de Necrose Tumoral alfa/metabolismo
2.
J Cell Physiol ; 211(2): 544-50, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17323380

RESUMO

Progesterone is an endogenous immunomodulator and can suppress T-cell activation during pregnancy. We have previously shown that the non-genomic effects of progesterone, especially acidification, are exerted via plasma membrane sites and suppress cellular genomic responses to mitogens. This study aimed to show that acidification is due to a non-genomic inhibition of Na(+)/H(+)-exchange 1 (NHE1) by progesterone and correlate this with immunosuppressive phytohemagglutinin (PHA)-induced T-cell proliferation. The presence of amiloride-sensitive NHE 1 was identified in T cells. The activity of NHE1 was inhibited by progesterone but not by 20alpha-hydroxyprogesterone (20alpha-OHP). Furthermore, 20alpha-OHP was able to compete with progesterone and release the inhibitory effect on the NHE1. The inhibition of NHE1 activity by progesterone-BSA demonstrated non-genomic action via plasma membrane sites. Finally, co-stimulation with PHA and progesterone or amiloride, (5-(N, N-dimethyl)-amiloride, DMA), inhibited PHA-induced T-cell proliferation, but this inhibition did not occur with 20alpha-OHP and PHA co-stimulation. However, when DMA was applied 72 h after PHA stimulation, it was able to suppress PHA-induced T-cell proliferation. This is the first study to show that progesterone causes a rapid non-genomic inhibition of plasma membrane NHE1 activity in T cells within minutes which is released by 20alpha-OHP. The inhibition of NHE1 leads to immunosuppressive T-cell proliferation and suggests that progesterone might exert a major rapid non-genomic suppressive effect on NHE1 activity at the maternal-fetal interface in vivo and that 20alpha-OHP may possibly be able to quickly release the suppression when T cells circulated away from the interface.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Fatores Imunológicos/metabolismo , Ativação Linfocitária , Progesterona/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Linfócitos T/metabolismo , 20-alfa-Di-Hidroprogesterona/metabolismo , Adulto , Amilorida/análogos & derivados , Amilorida/farmacologia , Ligação Competitiva , Proteínas de Transporte de Cátions/antagonistas & inibidores , Proteínas de Transporte de Cátions/genética , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Concentração de Íons de Hidrogênio , Fatores Imunológicos/farmacologia , Líquido Intracelular/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Masculino , Mitógenos/farmacologia , Fito-Hemaglutininas/farmacologia , Progesterona/farmacologia , RNA Mensageiro/análise , Trocador 1 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores , Trocadores de Sódio-Hidrogênio/genética , Linfócitos T/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...