Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37420761

RESUMO

The proton exchange membrane water electrolyzer (PEMWE) requires a high operating voltage for hydrogen production to accelerate the decomposition of hydrogen molecules so that the PEMWE ages or fails. According to the prior findings of this R&D team, temperature and voltage can influence the performance or aging of PEMWE. As the PEMWE ages inside, the nonuniform flow distribution results in large temperature differences, current density drops, and runner plate corrosion. The mechanical stress and thermal stress resulting from pressure distribution nonuniformity will induce the local aging or failure of PEMWE. The authors of this study used gold etchant for etching, and acetone was used for the lift-off part. The wet etching method has the risk of over-etching, and the cost of the etching solution is also higher than that of acetone. Therefore, the authors of this experiment adopted a lift-off process. Using the flexible seven-in-one (voltage, current, temperature, humidity, flow, pressure, oxygen) microsensor developed by our team, after optimized design, fabrication, and reliability testing, it was embedded in PEMWE for 200 h. The results of our accelerated aging test prove that these physical factors affect the aging of PEMWE.


Assuntos
Prótons , Água , Acetona , Reprodutibilidade dos Testes , Hidrogênio
2.
Membranes (Basel) ; 12(10)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36295677

RESUMO

The high-pressure proton exchange membrane water electrolyzer (PEMWE) used for hydrogen production requires a high-operating voltage, which easily accelerates the decomposition of hydrogen molecules, resulting in the aging or failure of the high-pressure PEMWE. As the high-pressure PEMWE ages internally, uneven flow distribution can lead to large temperature differences, reduced current density, flow plate corrosion, and carbon paper cracking. In this study, a new type of micro hydrogen sensor is developed with integrated flexible seven-in-one (voltage; current; temperature; humidity; flow; pressure; and hydrogen) microsensors.

3.
Micromachines (Basel) ; 13(9)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36143993

RESUMO

The adsorption and desorption of hydrogen in the magnesium powder hydrogen tank should take place in an environment with a temperature higher than 250 °C. High temperature and high strain will lead to reactive hydrogen leakage from the magnesium hydrogen tank due to tank rupture. Therefore, it is very important to monitor in real time the volume expansion, temperature change, and strain change on the surface of the magnesium hydrogen tank. In this study, the micro-electro-mechanical systems (MEMS) technology was used to innovatively integrate the micro-temperature sensor and the micro-strain sensor into a two-in-one flexible high-temperature micro-sensor with a small size and high sensitivity. It can be placed on the surface of the magnesium hydrogen tank for real-time micro-monitoring of the effect of hydrogen pressure and powder hydrogen absorption expansion on the strain of the hydrogen storage tank.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...