Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 441: 138115, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38183716

RESUMO

Ara h 1 is the major allergen in peanuts. To enhance the unique flavor, peanuts are usually roasted at high temperatures. However, roasting can increase the allergenic potential, owing to glycation of allergens. Atmospheric cold plasma (ACP) is a non-thermal processing technology that generates reactive species, enabling protein structural changes. Herein, glucose was also added to the ACP-treated peanut protein before roasting. The content and antigenicity of the advanced glycation end products were measured. The antigenicity was evaluated by ELISA and in vitro digestion assays. The amino acid profile and secondary and tertiary protein structures were also assessed. The antigenicity of Ara h 1 decreased by 91 % and 76 % after 30 min of air and nitrogen plasma treatment, respectively. The glycation degree and thermal and digestive stabilities were also reduced. These results correlated with the structural changes, denaturation, and aggregation. Therefore, cold plasma may reduce the allergic effects of peanuts.


Assuntos
Hipersensibilidade a Amendoim , Gases em Plasma , Arachis/química , Antígenos de Plantas/química , Aminoácidos , Proteínas de Plantas/metabolismo , Alérgenos/química
2.
Molecules ; 28(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37446565

RESUMO

The cost-effectiveness and high efficiency of atmospheric cold plasma (ACP) incentivise researchers to explore its potentials within the food industry. Presently, the destructive nature of this nonthermal technology can be utilised to inactivate foodborne pathogens, enzymatic ripening, food allergens, and pesticides. However, by adjusting its parameters, ACP can also be employed in other novel applications including food modification, drying pre-treatment, nutrient extraction, active packaging, and food waste processing. Relevant studies were conducted to investigate the impacts of ACP and posit that reactive oxygen and nitrogen species (RONS) play the principal roles in achieving the set objectives. In this review article, operations of ACP to achieve desired results are discussed. Moreover, the recent progress of ACP in food processing and safety within the past decade is summarised while current challenges as well as its future outlook are proposed.


Assuntos
Gases em Plasma , Eliminação de Resíduos , Alimentos , Indústria Alimentícia , Manipulação de Alimentos/métodos
3.
J Sci Food Agric ; 103(6): 3017-3027, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36646652

RESUMO

BACKGROUND: Peanut allergy is recognized as a major food allergy that triggers severe and even fatal symptoms. Avoidance of peanuts in the diet is the main option for current safety management. Processing techniques reducing peanut allergenicity are required to develop other options. Cold plasma is currently considered as a novel non-thermal approach to alter protein structure and has the potential to alleviate immunoreactivity of protein allergen. RESULTS: The application of a cold argon plasma jet to peanut protein extract could reduce the amount of a 64 kDa protein band corresponding to a major peanut allergen Ara h 1 using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but the overall protein size distribution did not change significantly. A decrease in peanut protein solubility was a possible cause that led to the loss of protein content in the soluble fraction. Immunoblotting and enzyme-linked immunosorbent assay elucidated that the immunoreactivity of Ara h 1 was significantly decreased with the time treated with plasma. Ara h 1 antigenicity reduced by 38% after five scans (approximately 3 min) of cold argon plasma jet treatment, and the reduction was up to 66% after approximately 15 min of treatment. CONCLUSION: The results indicate that cold argon plasma jet treatment could be a suitable platform for alleviating the immunoreactivity of peanut protein. This work demonstrates an efficient, compact, and rapid platform for mitigating the allergenicity of peanuts, and shows great potential for the plasma platform as a non-thermal technique in the food industry. © 2023 Society of Chemical Industry.


Assuntos
Hipersensibilidade a Amendoim , Gases em Plasma , Arachis/química , Antígenos de Plantas/química , Alérgenos/química , Proteínas de Plantas/metabolismo , Pressão Atmosférica
4.
Appl Microbiol Biotechnol ; 106(23): 7737-7750, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36329134

RESUMO

Atmospheric cold plasma (ACP) is a nonthermal technology that is extensively used in several industries. Within the scopes of engineering and biotechnology, some notable applications of ACP include waste management, material modification, medicine, and agriculture. Notwithstanding numerous applications, ACP still encounters a number of challenges such as diverse types of plasma generators and sizes, causing standardization challenges. This review focuses on the uses of ACP in engineering and biotechnology sectors in which the innovation can positively impact the operation process, enhance safety, and reduce cost. Additionally, its limitations are examined. Since ACP is still in its nascent stage, the review will also propose potential research opportunities that can help scientists gain more insights on the technology. KEY POINTS: • ACP technology has been used in agriculture, medical, and bioprocessing industries. • Chemical study on the reactive species is crucial to produce function-specific ACP. • Different ACP devices and conditions still pose standardization problems.


Assuntos
Gases em Plasma , Agricultura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...