Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
J Dent Sci ; 19(3): 1416-1425, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39035266

RESUMO

Background/purpose: Persistent activation of myofibroblasts is attributed to various dysregulated biological events conferring multiple types of fibrosis diseases, including oral submucous fibrosis (OSF). Although the significance of non-coding RNAs (ncRNAs) in the occurrence of fibrosis has been appreciated, the detailed mechanisms still have not been fully elucidated. The aim of this study was to identify key dysregulated ncRNAs and elucidate their pro-fibrotic mechanisms in promoting myofibroblast activation and the pathological development of OSF. Materials and methods: Expression of non-coding RNAs and mRNAs in OSF cohort was determined using RNA sequencing and qRT-PCR. The molecular axis of pro-fibrotic ncRNAs were exploited via luciferase reporter activity assay and RNA expression rescue experiments. Functional assays, including collagen gel contraction, wound healing ability, cell migration, and reactive oxygen species (ROS) production, were conducted to assess the changes in the myofibroblastic phenotypes of primary human buccal mucosal fibroblasts. Results: Herein, we found that long non-coding RNA MetaLnc9 was upregulated in OSF specimens and positively associated with several fibrosis markers. Silencing of MetaLnc9 diminished the features of activated myofibroblasts and the production of ROS. We not only showed that MetaLnc9 functioned as a competitive endogenous RNA of microRNA (miR)-143, but also demonstrated that the pro-fibrosis effect of MetaLnc9 on myofibroblast activities was mediated by suppression of miR-143. Moreover, our data showed that fascin actin-bundling protein 1 (FSCN1) was a direct target of miR-143 and positively related to MetaLnc9. Conclusion: Upregulation of MetaLnc9 may enhance the activation of myofibroblasts by sponging miR-143 and titrating its inhibitory property on FSCN1.

2.
J Dent Sci ; 19(3): 1389-1395, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39035323

RESUMO

Background/purpose: Accumulating evidence has suggested that treatment failure of cancer therapy can be attributed to cancer stem cells (CSCs). Among numerous regulators of cancer stemness, non-coding RNAs (ncRNAs) have gained significant attention recently. In this study, we examined the role of gastric adenocarcinoma predictive long intergenic noncoding RNA (GAPLINC) in oral CSCs (OCSCs). Materials and methods: RNA Sequencing and quantitative real-time polymerase chain reaction (qRT-PCR) were used to determine the expression of GAPLINC. Flow cytometry and sphere-forming assay were exploited to isolate OCSCs. Measurement of aldehyde dehydrogenase 1 (ALDH1) activity, CD44 expressing cells, and various phenotypic assays, such as self-renewal, migration, invasion, and colony-forming abilities, were conducted in CSCs of two types of oral cancer cells (SAS and GNM) following the knockdown of GAPLINC. A luciferase reporter was also carried out to validate the direct interaction between GAPLINC and microRNA (miR)-331-3p. Results: Our results showed that GAPLINC was overexpressed in OCSCs from patient-derived and oral cancer cell lines. We demonstrated that silencing of GAPLINC in OCSCs downregulated various CSC hallmarks, such as ALDH1 activity, percentage of CD44-expressing cells, self-renewal capacity, and colony-forming ability. Moreover, our results revealed that the effect of GAPLINC on cancer stemness was mediated by direct repression of miR-331-3p. Conclusion: These data have potential clinical implications in that we unraveled the aberrant upregulation of GAPLINC and demonstrated that suppression of GAPLINC may reduce cancer stemness via sequestering miR-331-3p.

3.
Int J Biol Macromol ; 264(Pt 1): 130504, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442830

RESUMO

Long non-coding RNA FENDRR possesses both anti-fibrotic and anti-cancer properties, but its significance in the development of premalignant oral submucous fibrosis (OSF) remains unclear. Here, we showed that FENDRR was downregulated in OSF specimens and fibrotic buccal mucosal fibroblasts (fBMFs), and overexpression of FENDRR mitigated various myofibroblasts hallmarks, and vice versa. In the course of investigating the mechanism underlying the implication of FENDRR in myofibroblast transdifferentiation, we found that FENDRR can directly bind to miR-214 and exhibit its suppressive effect on myofibroblast activation via titrating miR-214. Moreover, we showed that mitofusin 2 (MFN2), a protein that is crucial to the fusion of mitochondria, was a direct target of miR-214. Our data suggested that FENDRR was positively correlated with MFN2 and MFN2 was required for the inhibitory property of FENDRR pertaining to myofibroblast phenotypes. Additionally, our results showed that the FENDRR/miR-214 axis participated in the arecoline-induced reactive oxygen species (ROS) accumulation and myofibroblast transdifferentiation. Building on these results, we concluded that the aberrant downregulation of FENDRR in OSF may be associated with chronic exposure to arecoline, leading to upregulation of ROS and myofibroblast activation via the miR-214-mediated suppression of MFN2.


Assuntos
MicroRNAs , Fibrose Oral Submucosa , Humanos , Miofibroblastos/metabolismo , Arecolina/efeitos adversos , Arecolina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fibrose Oral Submucosa/genética , Fibrose Oral Submucosa/metabolismo , Fibrose Oral Submucosa/patologia , Mucosa Bucal/metabolismo , Fibroblastos , MicroRNAs/genética , MicroRNAs/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/farmacologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
4.
Am J Chin Med ; 51(7): 1865-1878, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37615589

RESUMO

Hypertrophic cardiomyopathy accompanies numerous cardiovascular diseases, and the intervention of cardiac hypertrophy is an important issue to prevent detrimental consequences. Mangiferin (MGN) is a glucosylxanthone found in Mangifera indica, which exhibits anti-oxidant and anti-inflammatory properties. Various studies have demonstrated the cardioprotective potential of MGN, but the mechanisms behind its beneficial effects have not been fully revealed. Here, angiotensin-II (Ang-II) was used to induce cardiac hypertrophy, and we examined cell size, expression of hypertrophy markers (e.g., ANP, BNP, and [Formula: see text]-MHC), and oxidative stress (e.g., the ratio of NADPH/NADP[Formula: see text], the expression of p22phox and p67phox, and ROS and SOD production) of cardiomyocytes. Moreover, we assessed the activation of mitogen-activated protein kinase (MAPK) signaling (e.g., p38 and ERK) and the NF-[Formula: see text]Bp65/iNOS axis. Additionally, an annexin V/PI assay was employed to evaluate whether MGN administration can attenuate Ang-II-elicited apoptosis. Lastly, the expression of Ang-II type 1 receptor (AT1) was measured to confirm its involvement in MGN-mediated protection. Our results showed that treatment with MGN attenuated the Ang-II-induced cell size, expression of hypertrophy markers, and oxidative stress in cardiomyocytes. MGN also abrogated the activation of MAPK signaling and the NF-[Formula: see text]Bp65/iNOS axis. Additionally, MGN prevented apoptosis and downregulated the elevation of AT1 in cardiomyocytes that had been exposed to Ang-II. Altogether, these results demonstrated the potential of using MGN to ameliorate the Ang-II-associated cardiac hypertrophy, which may be due to its anti-oxidant and anti-inflammatory effects through suppression of MAPK signaling and the NF-[Formula: see text]Bp65/iNOS axis.

5.
Environ Toxicol ; 38(10): 2476-2486, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37497868

RESUMO

Although the height of the proliferating layer that was suppressed in the growth plate has been recognized as an adverse effect of cisplatin in pediatric cancer survivors, the detailed pathological mechanism has not been elucidated. Sirtuin-1 (SIRT1) has been reported as an essential modulator of cartilage homeostasis, but its role in cisplatin-induced damage of chondrocytes remains unclear. In this study, we examined how cisplatin affected the expression of SIRT1 and cell viability. Next, we showed downregulation of SIRT1 after cisplatin treatment resulted in suppression of Peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α), leading to inhibition of Nrf2 nuclear translocation and subsequently decreased Heme oxygenase-1(HO-1) and NAD(P)H Quinone Dehydrogenase 1(NQO-1) expression. Blockage of the SIRT1/ PGC-1α axis not only increased oxidative stress with lower antioxidant SOD and GSH, but also contributed to mitochondrial dysfunction evidenced by the collapse of membrane potential and repression of mitochondrial DNA copy number and ATP. We also found that Cisplatin up-regulated the p38 phosphorylation, pro-inflammatory events and matrix metalloproteinases (MMPs) in chondrocytes through the SIRT1-modulated antioxidant manner. Collectively, our findings suggest that preservation of SIRT1 in chondrocytes may be a potential target to ameliorate growth plate dysfunction for cisplatin-receiving pediatric cancer survivors.


Assuntos
Antioxidantes , Cisplatino , Humanos , Criança , Antioxidantes/metabolismo , Cisplatino/toxicidade , Sirtuína 1/genética , Sirtuína 1/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Condrócitos/metabolismo , Estresse Oxidativo , Apoptose
6.
Environ Toxicol ; 38(9): 2165-2172, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37357850

RESUMO

Myocardial hypertrophy plays a crucial role in cardiovascular disease (CVD) development. Myocardial hypertrophy is an adaptive response by myocardial cells to stress after cardiac injury to maintain cardiac output and function. Angiotensin II (Ang-II) regulates CVD through the renin-angiotensin-aldosterone system, and its signaling in cardiac myocytes leads to excessive reactive oxygen species (ROS) production, oxidative stress, and inflammation. Sesamin (SA), a natural compound in sesame seeds, has anti-inflammatory and anti-apoptotic effects. This study investigated whether SA could attenuate hypertrophic damage and oxidative injuries in H9c2 cells under Ang-II stimulation. We found that SA decreased the cell surface area. Furthermore, Ang-II treatment reduced Ang-II-increased ANP, BNP, and ß-MHC expression. Ang-II enhanced NADPH oxidase activity, ROS formation, and decreased Superoxide Dismutase (SOD) activity. SA treatment reduces Ang-II-caused oxidative injuries. We also found that SA mitigates Ang-II-induced apoptosis and pro-inflammatory responses. In conclusion, SA could attenuate Ang-II-induced cardiac hypertrophic injuries by inhibiting oxidative stress, apoptosis, and inflammation in H9c2 cells. Therefore, SA might be a potential supplement for CVD management.


Assuntos
Angiotensina II , Doenças Cardiovasculares , Humanos , Angiotensina II/toxicidade , Angiotensina II/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Cardiomegalia/induzido quimicamente , Miócitos Cardíacos , Doenças Cardiovasculares/metabolismo
7.
J Dent Sci ; 18(2): 814-821, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37021272

RESUMO

Background/purpose: Emerging evidence has shown that various failures in cancer therapy, such as drug resistance, metastasis, and cancer relapse are attributed to cancer stem cells (CSCs). Also, growing attention has been paid to the regulation of non-coding RNAs in cancer stemness. Here, we aimed to investigate the contribution of LINC01296 in the modulation of oral CSCs. Materials and methods: The phenotypic assays including migration, invasion, and colony-forming abilities were carried out in CSCs of two types of oral cancer cells (SAS and GNM) following the knockdown of LINC01296. In addition, the percentage of cells expressing stemness marker, ALDH1, and drug resistance marker, ABCG2, was examined as well as the self-renewal capacity after silencing of LINC01296. Moreover, a luciferase reporter was used to validate the direct interaction between LINC01296 and miR-143. Results: Our results showed that LINC01296 was significantly overexpressed in oral cancer tissues and positively correlated with stemness markers. The phenotypic and flow cytometry assays demonstrated that suppression of LINC01296 reduced the aggressiveness, cancer stemness features, and colony-forming and self-renewal abilities in oral CSCs. Furthermore, we demonstrated that LINC01296 may enhance cancer stemness features through suppression of the effect of miR-143. Conclusion: Silencing of LINC01296 may be a promising direction for oral cancer therapy by reducing cancer stemness via regulation of miR-143.

8.
Nutrients ; 15(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36986051

RESUMO

Oral submucous fibrosis (OSF) is a premalignant disorder and persistent activation of myofibroblasts is implicated in this pathological progression. Increasing attention has been addressed towards non-coding RNA-regulated myofibroblasts activities and the effects of phytochemicals on non-coding RNA modulation are of great importance. In the present study, we examined the anti-fibrosis property of α-mangostin, a xanthone isolated from the pericarp of mangosteen. We found that α-mangostin exhibited inhibitory potency in myofibroblast activities and expression of fibrosis markers at the concentrations that caused neglectable damage to normal cells. Apart from the downregulation of TGF-ß1/Smad2 signaling, we found that α-mangostin attenuated the expression of long non-coding RNA LincROR as well. Our results demonstrated that the effects of α-mangostin on myofibroblast activation were reverted when LincROR was overexpressed. Additionally, we showed the expression of LincROR in OSF specimens was elevated and silencing of LincROR successfully attenuated myofibroblast characteristics and TGF-ß1/Smad2 activation. Taken together, these findings indicated that the anti-fibrosis effects of α-mangostin merit consideration and may be due to the attenuation of LincROR.


Assuntos
Fibrose Oral Submucosa , Xantonas , Humanos , Miofibroblastos , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Baixo , Xantonas/farmacologia , Fibrose Oral Submucosa/genética , Fibrose Oral Submucosa/metabolismo , Fibrose Oral Submucosa/patologia
9.
Int J Mol Sci ; 24(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36982885

RESUMO

Oral submucous fibrosis (OSF) has been recognized as a potentially malignant disorder and is characterized by inflammation and the deposition of collagen. Among various regulators of fibrogenesis, microRNAs (miR) have received great attention but the detailed mechanisms underlying the miR-mediated modulations remain largely unknown. Here, we showed that miR-424 was aberrantly overexpressed in OSF tissues, and then we assessed its functional role in the maintenance of myofibroblast characteristics. Our results demonstrated that the suppression of miR-424 markedly reduced various myofibroblast activities (such as collagen contractility and migration ability) and downregulated the expression of fibrosis markers. Moreover, we showed that miR-424 exerted this pro-fibrosis property via direct binding to TGIF2, an endogenous repressor of the TGF-ß signaling. In addition, our findings indicated that overexpression of miR-424 activated the TGF-ß/Smad pathway, leading to enhanced myofibroblast activities. Altogether, our data revealed how miR-424 contributed to myofibroblast transdifferentiation, and targeting the miR-424/TGIF2 axis may be a viable direction for achieving satisfactory results from OSF treatment.


Assuntos
MicroRNAs , Fibrose Oral Submucosa , Humanos , Fibrose Oral Submucosa/patologia , Mucosa Bucal/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Miofibroblastos/metabolismo , Fibrose , Colágeno/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Homeodomínio/metabolismo
10.
Int J Biol Macromol ; 232: 123400, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36702230

RESUMO

Long non-coding RNA XIST promotes the development of various types of head and neck cancers, but its role in the progression of precancerous oral submucous fibrosis (OSF) has not been determined yet. As such, we aimed to examine whether XIST implicates in the regulation of myofibroblast activation. Our results showed that the expression of XIST was upregulated in OSF tissues and fibrotic buccal mucosal fibroblasts (fBMFs), and the silencing of XIST downregulated several myofibroblasts features. We demonstrated that elevation of let-7i after inhibition of XIST may lead to reduced myofibroblast activation. On the contrary, overexpression of high mobility group AT-Hook 1 (HMGA1) following the suppression of let-7i may result in enhanced myofibroblast activities. Moreover, we showed that the suppressive effect of silencing of XIST on myofibroblasts hallmarks was reversed by let-7i inhibition or HMGA1 overexpression, suggesting the pro-fibrotic property of XIST was mediated by downregulation of let-7i and upregulation of HMGA1. These findings revealed that myofibroblast activation of fBMFs may attribute to the alteration of the XIST/let-7i/HMGA1 axis. Therapeutic approaches to target this axis may serve as a promising direction to ameliorate the malignant progression of OSF.


Assuntos
MicroRNAs , Fibrose Oral Submucosa , Humanos , Fibrose Oral Submucosa/genética , Fibrose Oral Submucosa/metabolismo , Fibrose Oral Submucosa/patologia , Miofibroblastos/metabolismo , Proteína HMGA1a/genética , Proteína HMGA1a/metabolismo , Proteína HMGA1a/uso terapêutico , Movimento Celular , Mucosa Bucal/metabolismo , Fatores de Transcrição/metabolismo , MicroRNAs/genética
11.
Int J Mol Sci ; 23(17)2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36077544

RESUMO

Doxorubicin (Dox) is a commonly used anthracycline chemotherapy with a side effect of cardiotoxicity, which may increase the risk of heart failure for cancer patients. Although various studies have demonstrated the cardioprotective property of dapagliflozin (DAPA), a sodium-glucose cotransporter 2 inhibitor, the detailed mechanism underlying its effect on Dox-induced cardiomyopathy is still limited. In this study, we showed that DAPA induced the activation of AKT/PI3K signaling in cardiac myoblast H9c2 cells following Dox treatment, leading to the upregulation of antioxidant HO-1, NQO1, and SOD, as well as an improved mitochondrial dysfunction via Nrf2. In addition, the reduced oxidative stress resulted in the downregulation of hypertrophy (ANP and BNP) and fibrosis (phospho-Smad3, collagen I, fibronectin, and α-SMA) markers. Furthermore, the inflammatory IL-8 concentration was inhibited after DAPA, possibly through PI3K/AKT/Nrf2/p38/NF-κB signaling. Moreover, our results were validated in vivo, and echocardiography results suggested an improved cardiac function in DAPA-receiving rats. In summary, we demonstrated that the administration of DAPA could mitigate the Dox-elicited cardiotoxicity by reducing oxidative stress, mitochondrial dysfunction, fibrosis, hypertrophy, and inflammation via PI3K/AKT/Nrf2 signaling.


Assuntos
Cardiotoxicidade , Fator 2 Relacionado a NF-E2 , Animais , Apoptose , Compostos Benzidrílicos , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Doxorrubicina/farmacologia , Fibrose , Glucosídeos , Hipertrofia/metabolismo , Inflamação/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Remodelação Ventricular
12.
Int J Mol Sci ; 23(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35682789

RESUMO

Oral submucous fibrosis (OSF) belongs to a group of potentially malignant disorders that are characterized by the progressive fibrosis of the lining mucosa as well as an increasing loss of tissue mobility [...].


Assuntos
Neoplasias Bucais , Fibrose Oral Submucosa , Fibrose , Humanos , Mucosa Bucal/patologia , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/etiologia , Neoplasias Bucais/patologia , Fibrose Oral Submucosa/tratamento farmacológico , Fibrose Oral Submucosa/etiologia , Fibrose Oral Submucosa/patologia
13.
Int J Mol Sci ; 23(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35682836

RESUMO

Oral cancer is one of the most common cancers worldwide, especially in South Central Asia. It has been suggested that cancer stem cells (CSC) play crucial roles in tumor relapse and metastasis, and approaches to target CSC may lead to promising results. Here, aldehyde dehydrogenase 1 (ALDH1) and CD44 were utilized to isolate CSCs of oral cancer. Butylidenephthalide, a bioactive phthalide compound from Angelica sinensis, was tested for its anti-CSC effects. MTT assay showed that a lower concentration of butylidenephthalide was sufficient to inhibit the proliferation of patient-derived ALDH1+/CD44+ cells without affecting normal cells. Administration of butylidenephthalide not only reduced ALDH1 activity and CD44 expression, it also suppressed the migration, invasion, and colony formation abilities of ALDH1+/CD44+ cells using a transwell system and clonogenic assay. A patient-derived xenograft mouse model supported our in vitro findings that butylidenephthalide possessed the capacity to retard tumor development. We found that butylidenephthalide dose-dependently downregulated the gene and protein expression of Sox2 and Snail. Our results demonstrated that overexpression of Snail in ALDH1-/CD44- (non-CSCs) cells induced the CSC phenotypes, whereas butylidenephthalide treatment successfully diminished the enhanced self-renewal and propagating properties. In summary, this study showed that butylidenephthalide may serve as an adjunctive for oral cancer therapy.


Assuntos
Carcinoma , Neoplasias Bucais , Família Aldeído Desidrogenase 1 , Animais , Carcinoma/metabolismo , Linhagem Celular Tumoral , Humanos , Receptores de Hialuronatos/metabolismo , Isoenzimas/metabolismo , Camundongos , Neoplasias Bucais/patologia , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/metabolismo , Anidridos Ftálicos , Retinal Desidrogenase/metabolismo , Fatores de Transcrição da Família Snail/metabolismo
14.
J Dent Sci ; 17(2): 653-658, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35756764

RESUMO

Background/purpose: Oral cancer is one of the common cancers worldwide. Emerging evidence has indicated that microRNAs (non-coding RNA molecules of approximately 22 nucleotides in length) are implicated in the regulation of cancer stemness. However, the functional role of microRNA-509 (miR-509) in the characteristics of oral cancer stem cells (CSCs) has not been unraveled. Materials and methods: The expression level of miR-509 in ALDH1+ and sphere oral CSCs was examined by qRT-PCR. The aldehyde dehydrogenase 1 (ALDH1) activity and CD44 expression were assessed using flow cytometry. Self-renewal, transwell migration, and colony formation assays were conducted to measure the CSC phenotypes. Besides, a luciferase reporter assay was used to confirm the direct interaction between miR-509 and its target polo-like kinase 1 (plk1). Results: We showed the expression of miR-509 was downregulated in the CSCs derived from oral cancer cells (SAS), and upregulation of miR-509 diminished the several CSCs features, including ALDH1 activity, self-renewal capacity, CD44 expression, migration, and colony-forming abilities. Moreover, the result from the luciferase reporter assay validated the direct binding of miR-509 to plk1. Conclusion: Our results suggest that the miR-509/plk1 axis may mediate the cancer stemness in oral cancer, and targeting this axis may attenuate the progression of oral cancer.

15.
J Dent Sci ; 17(2): 683-687, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35756801

RESUMO

Oral potentially malignant disorders (OPMD) are lesions that may precede the onset of cancers in the oral cavity, and oral submucosal fibrosis (OSF) is one of the OPMD that is usually found in the buccal mucosa. Considerable effort has been made to elucidate the pathogenesis of OSF, and emerging evidence has suggested that microRNAs may play significant roles in the development of OSF. Several studies demonstrated that aberrant expression of miRNAs is also observed in the fibrotic BMFs (fBMFs) derived from OSF tissues. For instance, it has been shown that miR-10b, miR-21, and miR-1246 are significantly elevated, and miR-29b, miR-200b, and miR-200c are reduced in fBMFs. This review systematically summarizes the current knowledge regarding the aberrant expression of microRNAs, molecular mechanisms underlying oral fibrogenesis by the dysregulated microRNAs, and how the interaction between microRNAs and long non-coding RNAs contributes to the progression of OSF. An overview of the modes of action by these microRNAs will provide a fundamental basis for clinical application.

16.
J Dent Sci ; 17(2): 677-682, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35756803

RESUMO

Background/purpose: Oral submucous fibrosis (OSF) has been regarded as a premalignant disorder of oral cancer, and myofibroblasts are the main cells that are responsible for pathological fibrosis. Hence, elucidation of the molecular mechanism underlying myofibroblast activation is important to treat OSF. MicroRNA-21 (miR-21) is a well-known fibrosis non-coding RNA, and its role in the development of OSF remains largely unclear. Materials and methods: Luciferase reporter assay was used to confirm the direct interaction between miR-21 and its target programmed cell death 4 (PDCD4). The expression level of PDCD4 in OSF was examined by qRT-PCR. Myofibroblast activities were assessed by collagen gel contraction and transwell migration assays. Results: Our result validated the direct binding of miR-21 to PDCD4. We showed the expression of PDCD4 was downregulated in OSF specimens and negatively correlated with miR-21. Our results suggested that overexpression of PDCD4 in fibrotic buccal mucosal fibroblasts (fBMFs) mitigated the myofibroblast activities, including collagen gel contractility and migration capacity. Moreover, we showed miR-21 contributed to myofibroblast activation of BMFs through repression of PDCD4. Conclusion: Our results suggest that the miR-21/PDCD4 axis mediates the myofibroblast activation of BMFs, and targeting this axis may exert an anti-fibrosis effect.

17.
Int J Mol Sci ; 23(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35328568

RESUMO

Ferroptosis is a newly identified mode of programmed cell death characterized by iron-associated accumulation of lipid peroxides. Emerging research on ferroptosis has suggested its implication in tumorigenesis and stemness of cancer. On the other hand, non-coding RNAs have been shown to play a pivotal role in the modulation of various genes that affect the progression of cancer cells and ferroptosis. In this review, we summarize recent advances in the theoretical modeling of ferroptosis and its relationship between non-coding RNAs and head and neck cancers. Aside from the significance of ferroptosis-related non-coding RNAs in prognostic relevance, we also review how these non-coding RNAs participate in the regulation of iron, lipid metabolism, and reactive oxygen species accumulation. We aim to provide a thorough grounding in the function of ferroptosis-related non-coding RNAs based on current knowledge in an effort to develop effective therapeutic strategies for head and neck cancers.


Assuntos
Ferroptose , Neoplasias de Cabeça e Pescoço , Carcinogênese , Ferroptose/genética , Neoplasias de Cabeça e Pescoço/genética , Humanos , Ferro/metabolismo , Espécies Reativas de Oxigênio/metabolismo
18.
Life (Basel) ; 12(2)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35207562

RESUMO

Diabetes mellitus is a well-known metabolic disorder with numerous complications, such as macrovascular diseases (e.g., coronary heart disease, diabetic cardiomyopathy, stroke, and peripheral vascular disease), microvascular diseases (e.g., diabetic nephropathy, retinopathy, and diabetic cataract), and neuropathy. Multiple contributing factors are implicated in these complications, and the accumulation of oxidative stress is one of the critical ones. Several lines of evidence have suggested that oxidative stress may induce epigenetic modifications that eventually contribute to diabetic vascular complications. As one kind of epigenetic regulator involved in various disorders, non-coding RNAs have received great attention over the past few years. Non-coding RNAs can be roughly divided into short (such as microRNAs; ~21-25 nucleotides) or long non-coding RNAs (lncRNAs; >200 nucleotides). In this review, we briefly discussed the research regarding the roles of various lncRNAs, such as MALAT1, MEG3, GAS5, SNHG16, CASC2, HOTAIR, in the development of diabetic vascular complications in response to the stimulation of oxidative stress.

19.
J Formos Med Assoc ; 121(10): 1900-1907, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35151562

RESUMO

BACKGROUND/PURPOSE: NF-κB family of transcription factors are the major contributors to malignant tumor progression, maintenance of cancer stemness, and enhancement of chemoresistance. Fenofibrate, a lipid-lowering drug, has been considered as a candidate for repurposing in the treatment of cancer through various pathways involved in apoptosis, cell cycle, migration, and invasion, including NF-κB. Nevertheless, whether fenofibrate possesses the potential to inhibit cancer stemness remained to be examined. METHODS: Cytotoxicity of fenofibrate was estimated by MTT assay. The cells expressing stemness marker were detected by flow cytometry using ALDEFLUOR™ Kit. The secondary sphere formation assay was used to assess the self-renewal ability. Transwell system was used to evaluate migration and invasion capacities. NF-κB expression was measured by the immunoblotting system. RESULTS: In the present study, we demonstrated that fenofibrate inhibited cell viability, expression of stemness marker, self-renewal, migration, and invasion capacities in a dose-dependent manner. Of note, fenofibrate targeted cancer stem cells of oral squamous cell carcinoma (OSCC-CSCs) and had minimal effects on normal cells. Moreover, administration of fenofibrate at a lower concentration was sufficient to diminish the expression of NF-κB p50 and p65. CONCLUSION: This study demonstrated that the inhibitory effects of fenofibrate on OSCC-CSCs properties may be associated with downregulation of NF-κB. These results indicated that administration of fenofibrate may serve as an alternative strategy for OSCC therapy.


Assuntos
Carcinoma de Células Escamosas , Fenofibrato , Neoplasias Bucais , Apoptose , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Fenofibrato/metabolismo , Fenofibrato/farmacologia , Fenofibrato/uso terapêutico , Humanos , Lipídeos , Neoplasias Bucais/patologia , NF-kappa B/metabolismo , NF-kappa B/farmacologia , NF-kappa B/uso terapêutico , Células-Tronco Neoplásicas
20.
Womens Health (Lond) ; 18: 17455057221078480, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35156483

RESUMO

BACKGROUND: Previous studies indicate significant gaps exist in current practices and perceptions of oncofertility care. OBJECTIVES: We aim to understand the clinical experience regarding oncofertility care among health providers in a multidisciplinary breast care team. METHODS: A qualitative, descriptive study was conducted. Data were collected through in-depth interviews with 16 health care providers who worked in a hospital in Taipei. Verbatim transcriptions were analyzed using constant analysis methods. RESULTS: Health care providers' experiences regarding fertility care for reproductive-age women with breast cancer were divided into two themes: personal perspectives and barriers. Personal perspectives consisted of six subthemes including empathizing with the patient's suffering during the diagnosis and treatment, safety as a prerequisite, satisfying the women's needs, respecting the women's choice, questioning women's ability to raise children, and returning to family life. There were also six subthemes under barriers. These subthemes were poor communication among the multidisciplinary team, lack of initial screening, insufficient support in the women's families, treatment considerations, lack of evidence-based information regarding oncofertility, and non-follow-up protocol. CONCLUSION: Nurses should evaluate the fertility needs of women with cancer and identify potential gaps during oncofertility care. Education strategies and tactics should be improved in order to overcome difficulties arising from health care providers' personal perspectives and barriers to the provision of optimal fertility care in women with cancer.


Assuntos
Neoplasias da Mama , Preservação da Fertilidade , Neoplasias da Mama/terapia , Criança , Feminino , Humanos , Equipe de Assistência ao Paciente , Pesquisa Qualitativa , Taiwan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...