Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(6-2): 065109, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39020991

RESUMO

When droplets approach a liquid surface, they have a tendency to merge in order to minimize surface energy. However, under certain conditions, they can exhibit a phenomenon called coalescence delay, where they remain separate for tens of milliseconds. This duration is known as the residence time or the noncoalescence time. Surprisingly, under identical parameters and initial conditions, the residence time for water droplets is not a constant value but exhibits dual peaks in its distribution. In this paper, we present the observation of the dual residence times through rigorous statistical analysis and investigate the quantitative variations in residence time by manipulating parameters such as droplet height, radius, and viscosity. Theoretical models and physical arguments are provided to explain their effects, particularly why a large viscosity or/and a small radius is detrimental to the appearance of the longer residence time peak.

2.
Phys Rev E ; 109(1-1): 014607, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38366469

RESUMO

The unique ability of fire ants to form a raft to survive flooding rain has enchanted biologists as well as researchers in other disciplines. It was established during the last decade that a three-dimensional aggregation of fire ants exhibits viscoelasticity with respect to external compression and shearing among numerous unusual mechanical properties. Continuing these works, we will study the ant raft in its natural form, i.e., composing no more than two layers. This allowed us to focus on the cracks that are unique to membranes and see how their patterns are influenced by the fact that these ants are mobile and can self-repair the damage to keep their raft from disintegration. In the beginning, we show that vertical and horizontal shaking can also prompt fire ants to aggregate. The canonical view that the stability of ant raft relies on the Cheerios effect and a combination of other parameters is tested. The force-displacement experiment is performed to show that two distinct mechanical responses and fracture patterns, characteristic of ductile and brittle materials, can be elicited, depending on the magnitude of the pull speed. During the process, we counted the number of ants that actively participated in the stress-strain relation and used this information to roughly sketch out the force chain. The latter information reveals that the pull force expedites the alignment of fire ants, in analogy to the effect of an electric field on liquid crystal polymers. To highlight the self-healing nature, we employ the creep experiment to study how the length and Young's modulus of the raft change or relax with time. One major finding is that the raft can exhibit zero Poisson's ratio without resorting to specific geometry structures. This is enabled by the active recruitment of ants from the top layer to the bottom layer to keep the raft from disintegrating.

3.
Phys Rev E ; 104(4-2): 045004, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34781581

RESUMO

Many of us have the experience of inflating balloons and twisting them into different shapes and animals. Snapping the balloon into two separate compartments is a necessary step that bears resemblance to the pinch-off phenomenon when a water droplet detaches from the faucet. In addition to testing whether balloons exhibit the properties of self-similarity and memory effect that are often associated with the latter event, we determine their phase diagram by experiments. It turns out that a common party balloon does not just snap, but can assume five more shapes, i.e., straight, necking, wrinkled, helix, and supercoil, depending on the twist angle and ratio of its length and diameter. Moreover, history also matters due to their prominent hysteresis. One may shift the phase boundary and/or reshuffle the phases by untwisting or lengthening the balloon at different twist angle and initial length. A heuristic minimal model is provided to obtain analytic expressions for the phase boundaries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...