Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 31(Pt 1): 195-201, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038695

RESUMO

The Photoelectron-Related Image and Nano-Spectroscopy (PRINS) endstation located at the Taiwan Photon Source beamline 27A2 houses a photoelectron momentum microscope capable of performing direct-space imaging, momentum-space imaging and photoemission spectroscopy with position sensitivity. Here, the performance of this microscope is demonstrated using two in-house photon sources - an Hg lamp and He(I) radiation - on a standard checkerboard-patterned specimen and an Au(111) single crystal, respectively. By analyzing the intensity profile of the edge of the Au patterns, the Rashba-splitting of the Au(111) Shockley surface state at 300 K, and the photoelectron intensity across the Fermi edge at 80 K, the spatial, momentum and energy resolution were estimated to be 50 nm, 0.0172 Å-1 and 26 meV, respectively. Additionally, it is shown that the band structures acquired in either constant energy contour mode or momentum-resolved photoemission spectroscopy mode were in close agreement.

2.
Nanoscale ; 13(39): 16719-16725, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34596197

RESUMO

We measured the magnetic hysteresis and coercivity of individual Co and Co0.8Fe0.2 bilayer nano-sized island structures formed on Cu (111) substrate using spin-polarized scanning tunneling microscopy. From the hysteresis taken on various sizes of islands, we found that the alloyed islands are ferromagnetic with out-of-plane magnetic anisotropy, same as the pure islands. Coercivity of the alloy islands, which is dependent on their size, was significantly reduced to ≈40% of that of the pure islands. Based on the Stoner-Wohlfarth model, we evaluated the amount of magnetic anisotropic energy and anisotropy constant for both pure and alloy islands. Since tunneling spectra taken on the alloy islands show upward shifts of the valence electronic states as compared to the pure ones, fewer electrons populated in the valence band of the alloy islands are presumably responsible for the reduction in the magnetic anisotropic energy.

3.
Nanotechnology ; 31(32): 325701, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32311680

RESUMO

Because of the expected long spin-transport length of organic materials, the magnetic metal/organic interface is crucial to the application of organic spintronics. In this study, [Fe/C60]3 multilayers were fabricated for the investigation of C60-mediated magnetic interlayer coupling. [Fe/C60]3 thin films were characterized using the magneto-optical Kerr effect, transmission electron microscopy, Raman spectroscopy, and x-ray photoelectron spectroscopy (XPS). The thin films revealed in-plane magnetic anisotropy, and the magnetic coercivity (H c ) drastically decreased from 6-8 mT to 0.5 mT with the increase of C60 thickness from 0.1 nm to 5 nm. The insertion of the C60 layer considerably reduced H c because a thickness greater than 1 nm of the C60 layer is sufficient for blocking magnetic exchange coupling between Fe layers. In addition, post-annealing increased H c because of Fe inter-diffusion, which promotes magnetic exchange coupling and further Fe-C bonding, as confirmed by a comparative study of XPS C-spectra. The thermally triggered inter-diffusion between Fe and C60 layers turned the multilayers into a mixed composite film and thus caused magnetic variation. Annealing time and temperature can be used as control parameters for the tuning of magnetism in Fe-C60 composites.

4.
Sci Rep ; 8(1): 6656, 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29703911

RESUMO

In this study, the microscopic origin of the hydrogen effect on magnetic materials was explored through the characterization of time-dependent magnetic domain evolution. We prepared 25-nm Co30Pd70 alloy films with canted magnetic moment on SiO2/Si(001) substrates. From macroscopic Kerr hysteresis loops, considerable hydrogen-induced reduction of magnetic coercivity by a factor of 1/5 in a longitudinal direction and enhancement of magnetic remanence to saturation ratio from 60% to 100% were observed. The magnetic reversal behavior of the Co30Pd70 alloy films gradually transformed from nucleation- to domain-wall-motion dominance when H2 pressure was increased from a vacuum of 1 × 10-5 mbar to 0.8 bar. Domain size also increased considerably with H2 pressure. When H2 pressure was above 0.4 bar, the domain wall (DW) motion was clear to observe and the DW velocity was approximately 10-6-10-5 m/s. Greater hydrogen content in the Co30Pd70 alloy films promoted DW motion that was closer to the behavior of a thermally activated model. The hydrogen effects on magnetism were observed to be reversible and could have valuable future application in spintronic devices for hydrogen sensing.

5.
Sci Rep ; 8(1): 3251, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29459685

RESUMO

[Pd/Fe]2 multilayers were deposited on a flat MgO(001) to study the effect of hydrogen on magnetic interlayer coupling. Complex magnetic hysteresis behavior, including single, double, and triple loops, were measured as a function of the azimuthal angle in a longitudinal and transverse direction. With a combination of a 2-fold magnetic anisotropy energy (MAE) in the bottom-Fe and a 4-fold MAE in the top-Fe, the complex magnetic hysteresis behavior could be clearly explained. Two well-split hysteresis loops with almost zero Kerr remanence were measured by choosing a suitable Pd thickness and applying the magnetic field perpendicular to the easy axis of the bottom-Fe. The split double loops originated from the 90°-rotation of the top-Fe moment. On exposure to a hydrogen gas atmosphere, the separation of the two minor loops increased, indicating that Pd-hydride formation enhanced the ferromagnetic coupling between the two Fe layers. Based on these observations, we proposed that, by applying a suitable constant magnetic field, the top-Fe moment could undergo reversible 90°-rotation following hydrogen exposure. The results suggest that the Pd space layer used for mediating the magnetic interlayer coupling is sensitive to hydrogen, and therefore, the multilayer system can function as a giant magnetoresistance-type sensor suitable for hydrogen gas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...