Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Food Drug Anal ; 31(2): 254-277, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37335159

RESUMO

Pulmonary injury is defined as a progressive inflammation. Extensive pro-inflammatory cytokines are secreted from alveolus, associated with the production of reactive oxygen species (ROS) and apoptosis. The model of endotoxin lipopolysaccharide (LPS)-stimulated lung cells has been applied to mimic the pulmonary injury. Some antioxidants and anti-inflammatory compounds can be used as chemopreventive agents of pulmonary injury. Quercetin-3-glucuronide (Q3G) has been showed to exert antioxidant, anti-inflammatory, anti-cancer, anti-aging and anti-hypertension effects. The aim of the study is to examine the inhibitory potential of Q3G on pulmonary injury and inflammation in vitro and in vivo. Firstly, human lung fibroblasts MRC-5 cells pre-treated with LPS were demonstrated to cause survival loss and ROS generation, were recovered by Q3G. Q3G also exhibited the anti-inflammatory effects on the LPS-treated cells with a reduction in the activation of NLRP3 [nucleotide-binding and oligomerization domain (NOD)-like receptor protein 3] inflammasome, leading to pyroptosis. Also, Q3G showed the anti-apoptotic effect in the cells might be mediated via inhibition of mitochondrial apoptosis pathway. To further explore in vivo pulmonary-protective effect of Q3G, C57BL/6 mice were intranasally exposed to a combination of LPS and elastase (LPS/E) to perform the pulmonary injury model. The results revealed that Q3G ameliorated pulmonary function parameters and lung edema in the LPS/E-induced mice. Q3G also suppressed the LPS/E-stimulated inflammation, pyroptosis and apoptosis in the lungs. Taken together, this study suggested the lung-protective potential of Q3G via downregulation of inflammation, pyroptotic and apoptotic cell death, contributing to its chemopreventive activity of pulmonary injury.


Assuntos
Lesão Pulmonar , Camundongos , Humanos , Animais , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Lipopolissacarídeos/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Inflamação , Antioxidantes/farmacologia , Anti-Inflamatórios/farmacologia
2.
Molecules ; 27(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35807275

RESUMO

The aim is to investigate the effect of lotus (Nelumbo nucifera Gaertn.) seedpod extract (LSE) on acetaminophen (APAP)-induced hepatotoxicity. LSE is rich in polyphenols and has potent antioxidant capacity. APAP is a commonly used analgesic, while APAP overdose is the main reason for drug toxicity in the liver. Until now, there has been no in vitro test of LSE in drug-induced hepatotoxicity responses. LSEs were used to evaluate the effect on APAP-induced cytotoxicity, ROS level, apoptotic rate, and molecule mechanisms. The co-treatment of APAP and LSEs elevated the survival rate and decreased intracellular ROS levels on HepG2 cells. LSEs treatment could significantly reduce APAP-induced HepG2 apoptosis assessed by DAPI and Annexin V/PI. The further molecule mechanisms indicated that LSEs decreased Fas/FasL binding and reduced Bax and tBid to restore mitochondrial structure and subsequently suppress downstream apoptosis cascade activation. These declines in COX-2, NF-κB, and iNOS levels were observed in co-treatment APAP and LSEs, which indicated that LSEs could ameliorate APAP-induced inflammation. LSE protected APAP-induced apoptosis by preventing extrinsic, intrinsic, and JNK-mediated pathways. In addition, the restoration of mitochondria and inflammatory suppression in LSEs treatments indicated that LSEs could decrease oxidative stress induced by toxic APAP. Therefore, LSE could be a novel therapeutic option for an antidote against overdose of APAP.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Nelumbo , Acetaminofen/metabolismo , Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Humanos , Fígado , Nelumbo/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Sementes/metabolismo
3.
Antioxidants (Basel) ; 10(6)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34204987

RESUMO

Saturated fatty acid is one of the important nutrients, but contributes to lipotoxicity in the liver, causing hepatic steatosis. Aqueous pepino leaf extract (AEPL) in the previous study revealed alleviated liver lipid accumulation in metabolic syndrome mice. The study aimed to investigate the mechanism of AEPL on saturated long-chain fatty acid-induced lipotoxicity in HepG2 cells. Moreover, the phytochemical composition of AEPL was identified in the present study. HepG2 cells treated with palmitic acid (PA) were used for exploring the effect of AEPL on lipid accumulation, apoptosis, ER stress, and antioxidant response. The chemical composition of AEPL was analyzed by HPLC-ESI-MS/MS. AEPL treatment reduced PA-induced ROS production and lipid accumulation. Further molecular results revealed that AEPL restored cytochrome c in mitochondria and decreased caspase 3 activity to cease apoptosis. In addition, AEPL in PA-stressed HepG2 cells significantly reduced the ER stress and suppressed SREBP-1 activation for decreasing lipogenesis. For defending PA-induced oxidative stress, AEPL promoted Nrf2 expression and its target genes, SOD1 and GPX3, expressions. The present study suggested that AEPL protected from PA-induced lipotoxicity through reducing ER stress, increasing antioxidant ability, and inhibiting apoptosis. The efficacy of AEPL on lipotoxicity was probably concerned with kaempferol and isorhamnetin derived compounds.

4.
Nutrients ; 12(11)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218008

RESUMO

Melanogenesis has many important physiological functions. However, abnormal melanin production causes various pigmentation disorders. Melanin synthesis is stimulated by α-melanocyte stimulating hormone (α-MSH) and ultraviolet (UV) irradiation. Lotus seedpod extract (LSE) has been reported as possessing antioxidative, anti-aging, and anticancer activities. The present study examined the effect of LSE on melanogenesis and the involved signaling pathways in vitro and in vivo. Results showed that non-cytotoxic doses of LSE and its main component epigallocatechin (EGC) reduced both tyrosinase activity and melanin production in the α-MSH-induced melanoma cells. Western blotting data revealed that LSE and EGC inhibited expressions of tyrosinase and tyrosinase-related protein 1 (TRP-1). Phosphorylation of p38 and protein kinase A (PKA) stimulated by α-MSH was efficiently blocked by LSE treatment. Furthermore, LSE suppressed the nuclear level of cAMP-response element binding protein (CREB) and disturbed the activation of melanocyte inducing transcription factor (MITF) in the α-MSH-stimulated B16F0 cells. The in vivo study revealed that LSE inhibited melanin production in the ear skin of C57BL/6 mice after exposure to UVB. These findings suggested that the anti-melanogenesis of LSE involved both PKA and p38 signaling pathways. LSE is a potent novo natural depigmenting agent for cosmetics or pharmaceutical applications.


Assuntos
Catequina/análogos & derivados , Lotus , Melaninas/efeitos adversos , Transtornos da Pigmentação/prevenção & controle , Extratos Vegetais/farmacologia , Animais , Catequina/farmacologia , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Sementes , Transdução de Sinais
5.
J Food Biochem ; 44(12): e13518, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33047354

RESUMO

Solanum muricatum Ait. (Pepino) is a plant food commonly cultivated in the Penghu Island, Taiwan. This present study aimed to investigate the protective effects of aqueous extract of Pepino leaves (AEPL) in mice with metabolic syndrome. Metabolic syndrome animal model was induced by continuous high-fat diet feeding and low-dose streptozotocin (40 mg/ml) for 5 days. A 1% AEPL or metformin were given for 6 weeks after streptozotocin injection. The results revealed that 1% AEPL effectively reduced fasting blood glucose, insulin resistance, and hyperlipidemia in metabolic syndrome mice. Histologic examination revealed lipid accumulation in liver decreased by 1% AEPL treatment. Further, western blot analysis revealed 1% AEPL treatment managed enzymes related to lipid synthesis and oxidation pathways and hepatic glucose production. Besides, 1% AEPL treatment increased liver antioxidant activities to against oxidative stress. These results concluded that AEPL treatment attenuated insulin resistance, hyperlipidemia, and hyperglycemia of metabolic syndrome. PRACTICAL APPLICATIONS: Metabolic syndrome (MS) is a multifactorial chronic disease which is characterized by dyslipidemia, insulin resistance, and hyperglycemia. However, there is no single drug or defined medication for MS so far. The present study revealed that AEPL treatment was able to regulate lipid metabolism and glycemic control at the molecular level to alleviate MS. AEPL has the potential to be a novo complementary medication for metabolic syndrome.


Assuntos
Hiperglicemia , Hiperlipidemias , Resistência à Insulina , Síndrome Metabólica , Solanum , Animais , Hiperglicemia/tratamento farmacológico , Hiperlipidemias/tratamento farmacológico , Síndrome Metabólica/tratamento farmacológico , Camundongos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Folhas de Planta , Taiwan
6.
Nutrients ; 10(7)2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30037014

RESUMO

Chronic alcohol intake leads to alcoholic fatty liver. The pathogenesis of alcoholic fatty liver is related to abnormal lipid accumulation, oxidative stress, endotoxins, and cytokines. Solanum muricatum Ait. (Pepino) is a plant food commonly cultivated in the Penghu island, Taiwan. Previous studies indicated that the aqueous extract of pepino was able to attenuate diabetic progression via its antioxidative and anti-inflammatory effects. However, the mechanisms of the antioxidative and anti-inflammatory effects of pepino leaf in preventing alcoholic fatty liver remain unknown. In this study, Lieber⁻DeCarli ethanol-containing liquid diet was used to induce alcoholic hepatic injury in C57BL/6 mice. The hepatoprotective effects and the related mechanisms of aqueous extract of pepino leaf (AEPL) were examined. Our results showed that 2% AEPL treatments protected the liver from ethanol-induced injury through reducing serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), total cholesterol (TC) and triglyceride (TG) (all p < 0.05). AEPL had the effects in improving the ethanol-induced lipid accumulation in mice under histological examination. Molecular data indicated that the anti-lipid accumulation effect of AEPL might be mediated via inducing hepatic levels of phospho-adenosine monophosphate-activated kinase (p-AMPK) and peroxisome proliferator-activated receptor (PPAR)-α, and reducing the expressions of hepatic lipogenic enzymes, including sterol regulatory element-binding protein (SREBP)-1c, acetyl-CoA carboxylase (ACC), and fatty acid synthase (FAS) (all p < 0.05). AEPL also decreased hepatic levels of thiobarbituric acid relative substances (TBARS), tumor necrosis factor (TNF)-α, and interleukin (IL)-6, as well as the expression of nuclear factor kappa B (NF-κB) (all p < 0.05). Moreover, AEPL significantly elevated the activities of superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx), and glutathione (GSH) content compared to the ethanol-fed group (all p < 0.05). Our present study suggests that AEPL could protect the liver against ethanol-induced oxidative injury and lipid accumulation.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Etanol/efeitos adversos , Fígado Gorduroso Alcoólico/tratamento farmacológico , Metabolismo dos Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Solanum , Alanina Transaminase/sangue , Animais , Antioxidantes/metabolismo , Aspartato Aminotransferases/sangue , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Colesterol/sangue , Citocinas/sangue , Fígado Gorduroso Alcoólico/sangue , Fígado Gorduroso Alcoólico/metabolismo , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , PPAR alfa/metabolismo , Fitoterapia , Extratos Vegetais/farmacologia , Folhas de Planta , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Triglicerídeos/sangue
8.
Eur J Nutr ; 55(2): 845-854, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26197872

RESUMO

PURPOSE: The anti-glycative and anti-oxidative effects from Houttuynia cordata leaves aqueous extract (HCAE) in heart and kidney of diabetic mice were examined. METHODS: HCAE, at 1 or 2 %, was supplied in drinking water for 8 weeks. Plasma glucose and blood urea nitrogen (BUN) levels and creatine phosphokinase (CPK) activity were measured. The production of oxidative and inflammatory factors was determined. Activity and protein expression of associated enzymes or regulators were analyzed. RESULTS: HCAE intake at both doses lowered plasma glucose and BUN levels, and CPK activity and also restored creatinine clearance rate in diabetic mice. HCAE intake, only at 2 %, retained plasma insulin levels (P < 0.05). HCAE reduced reactive oxygen species, protein carbonyl, interleukin-6, tumor necrosis factor-alpha, N (ε) -(carboxymethyl)-lysine, pentosidine and fructose levels, and reserved glutathione content in heart and kidney of diabetic mice (P < 0.05). Diabetes enhanced aldose reductase (AR) activity and protein expression in heart and kidney (P < 0.05). HCAE intake at both doses decreased renal AR activity and protein expression, but only at 2 % lowered cardiac AR activity and protein expression (P < 0.05). Diabetes increased protein expression of RAGE, p47(phox) and gp91(phox), nuclear factor kappa-B (NF-κB) p50, NF-κB p65 and mitogen-activated protein kinase in heart and kidney (P < 0.05). HCAE intake only at 2 % limited RAGE expression, but at 1 and 2 % downregulated p47(phox), NF-κB p65 and p-p38 expression in these organs (P < 0.05). CONCLUSIONS: These findings suggest that Houttuynia cordata leaves aqueous extract could ameliorate cardiac and renal injury under diabetic condition.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Houttuynia/química , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Arginina/análogos & derivados , Arginina/sangue , Glicemia/metabolismo , Nitrogênio da Ureia Sanguínea , Creatina Quinase/sangue , Relação Dose-Resposta a Droga , Frutose/sangue , Glutationa/sangue , Coração/efeitos dos fármacos , Coração/fisiologia , Insulina/sangue , Interleucina-6/sangue , Rim/efeitos dos fármacos , Rim/metabolismo , Lisina/análogos & derivados , Lisina/sangue , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NADPH Oxidase 2 , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Extratos Vegetais/análise , Folhas de Planta/química , Espécies Reativas de Oxigênio/metabolismo , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Fator de Necrose Tumoral alfa/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...