Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Air Waste Manag Assoc ; 62(7): 838-45, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22866585

RESUMO

The mesostructured materials MCM-41 and SBA-15 were studied as possible supports of bromocresol green (BG) dye impregnation for the ammonia gas detection because of their large surface area, high regenerative property, and high thermal stability. X-ray diffraction, transmission electron microscopy, scanning electron microscope, and N2 adsorption analysis were used to characterize the prepared materials. These materials could sense ammonia via visible color change from yellowish-orange to blue color. The color change process of the nanostructured materials was fully reversible during 10 cyclic tests. The results indicated that the ammonia absorption responses of the two nanostructured materials were both very sensitive, and high linear correlation and high precision were achieved. As the gaseous ammonia concentrations were 50 and 5 ppmv, the response times for the SBA-15/BG were only 1 and 5 min, respectively. Moreover the BG dye-impregnated SBA-15 was less affected by the variation in the relative humidity. It also had faster response for the detection of NH3, as well as lower manufacturing price as compared to that of the dye-impregnated MCM-41. Such feature enables SBA-15/BG to be a very promising material for the detection of ammonia gas.


Assuntos
Amônia/análise , Corantes/análise , Exposição Ambiental/análise , Dióxido de Silício/química , Adsorção , Verde de Bromocresol , Gases/análise , Microscopia Eletrônica de Transmissão , Porosidade , Difração de Raios X
2.
J Air Waste Manag Assoc ; 60(5): 629-35, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20480862

RESUMO

The hydride gas of phosphine (PH3) is commonly used for semiconductor and optoelectronic industries. The local scrubbers must immediately abate it because of its high toxicity. In this study, copper (Cu) loaded on the sol-gel-derived gamma-alumina (Al2O3) adsorbents are prepared and tested to investigate the possibility of PH3 removal and sorbent regeneration. Test results showed that during the breakthrough time of over 99% PH3 removal efficiency, the maximum adsorption capacity of Cu loaded on the sol-gel-derived gamma-Al2O3 adsorbent is 18 mg-PH3/g-adsorbent. This is much higher than that of Cu loaded on the commercial gamma-Al2O3 adsorbent--8.6 mg-PH3/g-adsorbent. The high specific surface area, narrow pore size distribution, and well dispersion of Cu loaded on the sol-gel-derived gamma-Al2O3 could be the reasons for its high PH3 adsorption capacity. The regeneration test shows that Cu loaded on the sol-gel-derived gamma-Al2O3 adsorbent can be regenerated after a simple air purging procedure. The cumulative adsorption capacity for five regeneration cycles is 65 mg-PH3/g-adsorbent, which is approximately double that of the Cu/zeolite adsorbent demonstrated in the literature.


Assuntos
Poluentes Atmosféricos/isolamento & purificação , Poluição do Ar/prevenção & controle , Óxido de Alumínio/química , Cobre/química , Fosfinas/isolamento & purificação , Adsorção , Catálise , Géis
3.
J Air Waste Manag Assoc ; 57(2): 204-10, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17355081

RESUMO

Copper, zinc, and cerium oxide adsorbents supported on alumina were used to remove silane gas (SiH4). The adsorbents were prepared using a coprecipitation method and characterized by the inductively coupled plasma mass spectrometry, X-ray powder diffractometer, and Brunauer-Emmett-Teller method (BET). The silane removal efficiency and adsorption capacity of the adsorbents were investigated in this study. Test results showed that the adsorbents containing active species had a removal efficiency >99.9% for SiH4 before breakthrough. Adsorbents containing mixed oxides (CuO-CeO2/ Al2O3 and CuO-ZnO/Al2O3), which showed well-dispersed active species and high BET surface areas, had a greater adsorption capacity than the adsorbents containing single metal oxide. However, when the CuO-ZnO/ Al2O3 adsorbents contain >40 wt% of active metal oxides, the increase of active species lowered the BET surface area leading to a decrease of the adsorption capacity. Additionally, when the content of the active metal oxides was between 20% and 40%, the CuO-ZnO/Al2O3 adsorbents demonstrated higher adsorption capacity.


Assuntos
Poluentes Ocupacionais do Ar/análise , Poluição do Ar/prevenção & controle , Óxido de Alumínio/química , Silanos , Absorção , Algoritmos , Metais/química , Óxidos/química , Porosidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...