Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 107(6-2): 065105, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37464647

RESUMO

The effect of wing shape on a forward-flying butterfly via decoupled factors of the wing-swept angle and the aspect ratio (AR) was investigated numerically. The wing-shape effect is a major concern in the design of a microaerial vehicle (MAV). In nature, the wing of a butterfly consists of partially overlapping forewing and hindwing; when the forewing sweeps forward or backward relative to the hindwing, the wing-swept angle and the AR of the entire wing simultaneously change. The effects of the wing-swept angle and AR on aerodynamics are coupled. To decouple their effects, we established wing-shape models with varied combinations of the wing-swept angle and AR based on the experimental measurement of two butterfly species (Papilio polytes and Kallima inachus) and developed a numerical simulation for analysis. In each model, the forewing and hindwing overlapped partially, constructing a single wing. Across the models, the wing-swept angle and AR of these single wings varied sequentially. The results show that, through our models, the effects of the wing-swept angle and AR were decoupled; both have distinct flow mechanisms and aerodynamic force trends and are consistent in the two butterfly species. For a fixed AR, a backward-swept wing increases lift and drag because of the enhanced attachment of the leading-edge vortex with increased strength of the wingtip vortex and the spanwise flow. For a fixed wing-swept angle, a small AR wing increases lift and decreases drag because of the large region of low pressure downstream and the wake-capture effect. Coupling these effects, the largest lift-to-drag ratio occurs for a forward-swept wing with the smallest AR. These results indicate that, in a flapping forward flight, sweeping a forewing forward relative to a hindwing is suitable for cruising. The flow mechanisms and decoupled and coupled effects of the wing-swept angle and the AR presented in this paper provide insight into the flight of a butterfly and the design of a MAV.

2.
Sci Rep ; 12(1): 10490, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729235

RESUMO

Protein complexes are the fundamental units of many biological functions. Despite their many advantages, one major adverse impact of protein complexes is accumulations of unassembled subunits that may disrupt other processes or exert cytotoxic effects. Synthesis of excess subunits can be inhibited via negative feedback control or they can be degraded more efficiently than assembled subunits, with this latter being termed cooperative stability. Whereas controlled synthesis of complex subunits has been investigated extensively, how cooperative stability acts in complex formation remains largely unexplored. To fill this knowledge gap, we have built quantitative models of heteromeric complexes with or without cooperative stability and compared their behaviours in the presence of synthesis rate variations. A system displaying cooperative stability is robust against synthesis rate variations as it retains high dimer/monomer ratios across a broad range of parameter configurations. Moreover, cooperative stability can alleviate the constraint of limited supply of a given subunit and makes complex abundance more responsive to unilateral upregulation of another subunit. We also conducted an in silico experiment to comprehensively characterize and compare four types of circuits that incorporate combinations of negative feedback control and cooperative stability in terms of eight systems characteristics pertaining to optimality, robustness and controllability. Intriguingly, though individual circuits prevailed for distinct characteristics, the system with cooperative stability alone achieved the most balanced performance across all characteristics. Our study provides theoretical justification for the contribution of cooperative stability to natural biological systems and represents a guideline for designing synthetic complex formation systems with desirable characteristics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...