Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Allergy Asthma Immunol Res ; 8(5): 404-11, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27334778

RESUMO

PURPOSE: Fungi have been known to be important aeroallergens for hundreds of years. Most studies have focused on total fungal concentration; however, the concentration of specific allergenic fungi may be more important on an individual basis. METHODS: Ten fungal allergic patients and 2 non-fungal allergic patients were enrolled. The patients with a decrease in physician or patient global assessment by more than 50% of their personal best were considered to have an exacerbation of allergic symptoms and to be in the active stage. Those who maintained their physician and patient global assessment scores at their personal best for more than 3 months were considered to be in the inactive stage. The concentrations of dominant fungi in the patients' houses and outdoors were measured by direct and viable counts at active and inactive stages. RESULTS: The exacerbation of allergic symptoms was not correlated with total fungal spore concentration or the indoor/outdoor ratio (I/O). Specific fungi, such as Cladosporium oxysporum (C. oxyspurum), C. cladosporioides, and Aspergillus niger (A. niger), were found to be significantly higher concentrations in the active stage than in the inactive stage. Presumed allergenic spore concentration threshold levels were 100 CFU/m³ for C. oxysporum, and 10 CFU/m³ for A. niger, Penicillium brevicompactum and Penicillium oxalicum. CONCLUSIONS: The major factor causing exacerbation of allergic symptoms in established fungal allergic patients may be the spore concentration of specific allergenic fungi rather than the total fungal concentration. These results may be useful in making recommendations as regards environmental control for fungal allergic patients.

2.
Biosens Bioelectron ; 78: 37-44, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26590701

RESUMO

A fast and accurate detection system for pathogens can provide immediate measurements for the identification of infectious agents. Therefore, the Microbead Quantum-dots Detection System (MQDS) was developed to identify and measure target DNAs of pathogenic microorganisms and eliminated the need of PCR amplifications. This nanomaterial-based technique can detect different microorganisms by flow cytometry measurements. In MQDS, pathogen specific DNA probes were designed to form a hairpin structure and conjugated on microbeads. In the presence of the complementary target DNA sequence, the probes will compete for binding with the reporter probes but will not interfere with the binding between the probe and internal control DNA. To monitor the binding process by flow cytometry, both the reporter probes and internal control probes were conjugated with Quantum dots that fluoresce at different emission wavelengths using the click reaction. When MQDS was used to detect the pathogens in environmental samples, a high correlation coefficient (R=0.994) for Legionella spp., with a detection limit of 0.1 ng of the extracted DNAs and 10 CFU/test, can be achieved. Thus, this newly developed technique can also be applied to detect other pathogens, particularly viruses and other genetic diseases.


Assuntos
Técnicas Biossensoriais/métodos , DNA Bacteriano/isolamento & purificação , Legionella/isolamento & purificação , Pontos Quânticos/química , Química Click , DNA Bacteriano/química , Citometria de Fluxo , Fluorescência , Humanos , Legionella/patogenicidade , Limite de Detecção , Microesferas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...