Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Biomed Eng ; 52(3): 611-626, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37989903

RESUMO

Inverse finite element analysis (iFEA) of the atrioventricular heart valves (AHVs) can provide insights into the in-vivo valvular function, such as in-vivo tissue strains; however, there are several limitations in the current state-of-the-art that iFEA has not been widely employed to predict the in-vivo, patient-specific AHV leaflet mechanical responses. In this exploratory study, we propose the use of Bayesian optimization (BO) to study the AHV functional behaviors in-vivo. We analyzed the efficacy of Bayesian optimization to estimate the isotropic Lee-Sacks material coefficients in three benchmark problems: (i) an inflation test, (ii) a simplified leaflet contact model, and (iii) an idealized AHV model. Then, we applied the developed BO-iFEA framework to predict the leaflet properties for a patient-specific tricuspid valve under a congenital heart defect condition. We found that the BO could accurately construct the objective function surface compared to the one from a [Formula: see text] grid search analysis. Additionally, in all cases the proposed BO-iFEA framework yielded material parameter predictions with average element errors less than 0.02 mm/mm (normalized by the simulation-specific characteristic length). Nonetheless, the solutions were not unique due to the presence of a long-valley minima region in the objective function surfaces. Parameter sets along this valley can yield functionally equivalent outcomes (i.e., closing behavior) and are typically observed in the inverse analysis or parameter estimation for the nonlinear mechanical responses of the AHV. In this study, our key contributions include: (i) a first-of-its-kind demonstration of the BO method used for the AHV iFEA; and (ii) the evaluation of a candidate AHV in-silico modeling approach wherein the chordae could be substituted with equivalent displacement boundary conditions, rendering the better iFEA convergence and a smoother objective surface.


Assuntos
Valvas Cardíacas , Valva Tricúspide , Humanos , Análise de Elementos Finitos , Teorema de Bayes , Valvas Cardíacas/fisiologia , Valva Tricúspide/fisiologia , Simulação por Computador
2.
Eng Comput ; : 1-22, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36742376

RESUMO

Infectious airborne diseases like the recent COVID-19 pandemic render confined spaces high-risk areas. However, in-person activities like teaching in classroom settings and government services are often expected to continue or restart quickly. It becomes important to evaluate the risk of airborne disease transmission while accounting for the physical presence of humans, furniture, and electronic equipment, as well as ventilation. Here, we present a computational framework and study based on detailed flow physics simulations that allow straightforward evaluation of various seating and operating scenarios to identify risk factors and assess the effectiveness of various mitigation strategies. These scenarios include seating arrangement changes, presence/absence of computer screens, ventilation rate changes, and presence/absence of mask-wearing. This approach democratizes risk assessment by automating a key bottleneck in simulation-based analysis-creating an adequately refined mesh around multiple complex geometries. Not surprisingly, we find that wearing masks (with at least 74% inward protection efficiency) significantly reduced transmission risk against unmasked and infected individuals. While the use of face masks is known to reduce the risk of transmission, we perform a systematic computational study of the transmission risk due to variations in room occupancy, seating layout and air change rates. In addition, our findings on the efficacy of face masks further support use of face masks. The availability of such an analysis approach will allow education administrators, government officials (courthouses, police stations), and hospital administrators to make informed decisions on seating arrangements and operating procedures. Supplementary Information: The online version contains supplementary material available at 10.1007/s00366-022-01773-9.

3.
J Biomech Eng ; 144(12)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36218246

RESUMO

We present a data-driven workflow to biological tissue modeling, which aims to predict the displacement field based on digital image correlation (DIC) measurements under unseen loading scenarios, without postulating a specific constitutive model form nor possessing knowledge of the material microstructure. To this end, a material database is constructed from the DIC displacement tracking measurements of multiple biaxial stretching protocols on a porcine tricuspid valve anterior leaflet, with which we build a neural operator learning model. The material response is modeled as a solution operator from the loading to the resultant displacement field, with the material microstructure properties learned implicitly from the data and naturally embedded in the network parameters. Using various combinations of loading protocols, we compare the predictivity of this framework with finite element analysis based on three conventional constitutive models. From in-distribution tests, the predictivity of our approach presents good generalizability to different loading conditions and outperforms the conventional constitutive modeling at approximately one order of magnitude. When tested on out-of-distribution loading ratios, the neural operator learning approach becomes less effective. To improve the generalizability of our framework, we propose a physics-guided neural operator learning model via imposing partial physics knowledge. This method is shown to improve the model's extrapolative performance in the small-deformation regime. Our results demonstrate that with sufficient data coverage and/or guidance from partial physics constraints, the data-driven approach can be a more effective method for modeling biological materials than the traditional constitutive modeling.


Assuntos
Física , Valva Tricúspide , Animais , Suínos , Análise de Elementos Finitos
4.
Forces Mech ; 62022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36278140

RESUMO

Valvular pathologies that induce deterioration in the aortic valve are a common cause of heart disease among aging populations. Although there are numerous available technologies to treat valvular conditions and replicate normal aortic function by replacing the diseased valve with a bioprosthetic implant, many of these devices face challenges in terms of long-term durability. One such phenomenon that may exacerbate valve deterioration and induce undesirable hemodynamic effects in the aorta is leaflet flutter, which is characterized by oscillatory motion in the biological tissues. While this behavior has been observed for thinner bioprosthetic valves, the specific underlying mechanics that lead to leaflet flutter have not previously been identified. This work proposes a computational approach to isolate the fundamental mechanics that induce leaflet flutter in thinner biological tissues during the cardiac cycle. The simulations in this work identify reduced flexural stiffness as the primary factor that contributes to increased leaflet flutter in thinner biological tissues, while decreased membrane stiffness and mass of the thinner tissues do not directly induce flutter in these valves. The results of this study provide an improved understanding of the mechanical tissue properties that contribute to flutter and offer significant insights into possible developments in the design of bioprosthetic tissues to account for and reduce the incidence of flutter.

5.
Acta Biomater ; 152: 321-334, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36041649

RESUMO

The pre-strains of biological soft tissues are important when relating their in vitro and in vivo mechanical behaviors. In this study, we present the first-of-its-kind experimental characterization of the tricuspid valve leaflet pre-strains. We use 3D photogrammetry and the reproducing kernel method to calculate the pre-strains within the central 10×10 mm region of the tricuspid valve leaflets from n=8 porcine hearts. In agreement with previous pre-strain studies for heart valve leaflets, our results show that all the three tricuspid valve leaflets shrink after being explanted from the ex vivo heart. These calculated strains are leaflet-specific and the septal leaflet experiences the most compressive changes. Furthermore, the strains observed after dissection of the central 10×10 mm region of the leaflet are smaller than when the valve is explanted, suggesting that our computed pre-strains are mainly due to the release of in situ annulus and chordae connections. The leaflets are then mounted on a biaxial testing device and preconditioned using force-controlled equibiaxial loading. We show that the employed preconditioning protocol does not 100% restore the leaflet pre-strains as removed during tissue dissection, and future studies are warranted to explore alternative preconditioning methods. Finally, we compare the calculated biomechanically oriented metrics considering five stress-free reference configurations. Interestingly, the radial tissue stretches and material anisotropies are significantly smaller compared to the post-preconditioning configuration. Extensions of this work can further explore the role of this unique leaflet-specific leaflet pre-strains on in vivo valve behavior via high-fidelity in-silico models. STATEMENT OF SIGNIFICANCE: This study provides a first of its kind benchtop characterization of tricuspid valve leaflet pre-strains. We used 3D photogrammetry to reconstruct the central region of the tricuspid valve leaflets in three configurations. The associated configurational changes revealed compressive, leaflet-specific strains after dissection of the valve from its in situ environment. Interestingly, we found that biaxial preconditioning did not restore the measured pre-strains of the leaflets. Depending on the selection of the stress-free reference configuration, this led to substantial differences in the leaflet mechanics. Our findings and methodology are crucial when it comes to relating in vitro mechanical behaviors to valve function in vivo. Future studies can integrate our quantified pre-strains into in-silico simulations to get more realistic predictions about the valve function.


Assuntos
Fenômenos Mecânicos , Valva Tricúspide , Animais , Anisotropia , Simulação por Computador , Suínos
6.
Data Brief ; 39: 107664, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34917710

RESUMO

This article provides Abaqus input files and user subroutines for performing finite element simulations of the tricuspid heart valve with an idealized geometry. Additional post-processing steps to obtain a ParaView visualization file (*.vtk) of the deformed geometry are also provided to allow the readers to use the included ParaView state file (*.pvsm) for customizable visualization and evaluation of the simulation results. We expect this first-of-its-kind in-silico benchmark dataset will facilitate user-friendly simulations considering material nonlinearity, leaflet-to-leaflet contact, and large deformations. Additionally, the information included herein can be used to rapidly evaluate other novel in-silico approaches developed for simulating cardiac valve function. The benchmark can be expanded to consider more complex features of the tricuspid valve function, such as the dynamic annulus motion or the time-varying transvalvular pressure. Interested readers are referred to the companion article (Johnson et al., 2021) for an example application of this in-silico tool for isogeometric analysis of tricuspid valves.

7.
J Mech Behav Biomed Mater ; 123: 104745, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34482092

RESUMO

Currently, the most common replacement heart valve design is the 'bioprosthetic' heart valve (BHV), which has important advantages in that it does not require permanent anti-coagulation therapy, operates noiselessly, and has blood flow characteristics similar to the native valve. BHVs are typically fabricated from glutaraldehyde-crosslinked pericardial xenograft tissue biomaterials (XTBs) attached to a rigid, semi-flexible, or fully collapsible stent in the case of the increasingly popular transcutaneous aortic valve replacement (TAVR). While current TAVR assessments are positive, clinical results to date are generally limited to <2 years. Since TAVR leaflets are constructed using thinner XTBs, their mechanical demands are substantially greater than surgical BHV due to the increased stresses during in vivo operation, potentially resulting in decreased durability. Given the functional complexity of heart valve operation, in-silico predictive simulations clearly have potential to greatly improve the TAVR development process. As such simulations must start with accurate material models, we have developed a novel time-evolving constitutive model for pericardial xenograft tissue biomaterials (XTB) utilized in BHV (doi: 10.1016/j.jmbbm.2017.07.013). This model was able to simulate the observed tissue plasticity effects that occur in approximately in the first two years of in vivo function (50 million cycles). In the present work, we implemented this model into a complete simulation pipeline to predict the BHV time evolving geometry to 50 million cycles. The pipeline was implemented within an isogeometric finite element formulation that directly integrated our established BHV NURBS-based geometry (doi: 10.1007/s00466-015-1166-x). Simulations of successive loading cycles indicated continual changes in leaflet shape, as indicated by spatially varying increases in leaflet curvature. While the simulation model assumed an initial uniform fiber orientation distribution, anisotropic regional changes in leaflet tissue plastic strain induced a complex changes in regional fiber orientation. We have previously noted in our time-evolving constitutive model that the increases in collagen fiber recruitment with cyclic loading placed an upper bound on plastic strain levels. This effect was manifested by restricting further changes in leaflet geometry past 50 million cycles. Such phenomena was accurately captured in the valve-level simulations due to the use of a tissue-level structural-based modeling approach. Changes in basic leaflet dimensions agreed well with extant experimental studies. As a whole, the results of the present study indicate the complexity of BHV responses to cyclic loading, including changes in leaflet shape and internal fibrous structure. It should be noted that the later effect also influences changes in local mechanical behavior (i.e. changes in leaflet anisotropic tissue stress-strain relationship) due to internal fibrous structure resulting from plastic strains. Such mechanism-based simulations can help pave the way towards the application of sophisticated simulation technologies in the development of replacement heart valve technology.


Assuntos
Bioprótese , Próteses Valvulares Cardíacas , Valva Aórtica , Modelos Cardiovasculares , Pericárdio , Estresse Mecânico
8.
Artigo em Inglês | MEDLINE | ID: mdl-34262232

RESUMO

Approximately 1.6 million patients in the United States are affected by tricuspid valve regurgitation, which occurs when the tricuspid valve does not close properly to prevent backward blood flow into the right atrium. Despite its critical role in proper cardiac function, the tricuspid valve has received limited research attention compared to the mitral and aortic valves on the left side of the heart. As a result, proper valvular function and the pathologies that may cause dysfunction remain poorly understood. To promote further investigations of the biomechanical behavior and response of the tricuspid valve, this work establishes a parameter-based approach that provides a template for tricuspid valve modeling and simulation. The proposed tricuspid valve parameterization presents a comprehensive description of the leaflets and the complex chordae tendineae for capturing the typical three-cusp structural deformation observed from medical data. This simulation framework develops a practical procedure for modeling tricuspid valves and offers a robust, flexible approach to analyze the performance and effectiveness of various valve configurations using isogeometric analysis. The proposed methods also establish a baseline to examine the tricuspid valve's structural deformation, perform future investigations of native valve configurations under healthy and disease conditions, and optimize prosthetic valve designs.

9.
Biomech Model Mechanobiol ; 20(6): 2071-2084, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34283347

RESUMO

Moyamoya disease (MMD) is characterized by narrowing of the distal internal carotid artery and the circle of Willis (CoW) and leads to recurring ischemic and hemorrhagic stroke. A retrospective review of data from 50 pediatric MMD patients revealed that among the 24 who had a unilateral stroke and were surgically treated, 11 (45.8%) had a subsequent, contralateral stroke. There is no reliable way to predict these events. After a pilot study in Acta-/- mice that have features of MMD, we hypothesized that local hemodynamics are predictive of contralateral strokes and sought to develop a patient-specific analysis framework to noninvasively assess this stroke risk. A pediatric MMD patient with an occlusion in the right middle cerebral artery and a right-sided stroke, who was surgically treated and then had a contralateral stroke, was selected for analysis. By using an unsteady Navier-Stokes solver within an isogeometric analysis framework, blood flow was simulated in the CoW model reconstructed from the patient's postoperative imaging data, and the results were compared with those from an age- and sex-matched control subject. A wall shear rate (WSR) > 60,000 s-1 (about 12 × higher than the coagulation threshold of 5000 s-1 and 9 × higher than control) was measured in the terminal left supraclinoid artery; its location coincided with that of the subsequent postsurgical left-sided stroke. A parametric study of disease progression revealed a strong correlation between the degree of vascular morphology altered by MMD and local hemodynamic environment. The results suggest that an occlusion in the CoW could lead to excessive contralateral WSRs, resulting in thromboembolic ischemic events, and that WSR could be a predictor of future stroke.


Assuntos
Transtornos Cerebrovasculares/diagnóstico por imagem , Transtornos Cerebrovasculares/fisiopatologia , Simulação por Computador , Imageamento Tridimensional , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/fisiopatologia , Angiografia , Animais , Transtornos Cerebrovasculares/patologia , Criança , Modelos Animais de Doenças , Progressão da Doença , Humanos , Camundongos Knockout , Doença de Moyamoya/patologia , Doença de Moyamoya/fisiopatologia , Projetos Piloto , Fluxo Sanguíneo Regional , Fatores de Risco , Acidente Vascular Cerebral/patologia
10.
Mech Res Commun ; 1122021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34305195

RESUMO

The left ventricle of the heart is a fundamental structure in the human cardiac system that pumps oxygenated blood into the systemic circulation. Several valvular conditions can cause the aortic and mitral valves associated with the left ventricle to become severely diseased and require replacement. However, the clinical outcomes of such operations, specifically the postoperative ventricular hemodynamics of replacing both valves, are not well understood. This work uses computational fluid-structure interaction (FSI) to develop an improved understanding of this effect by modeling a left ventricle with the aortic and mitral valves replaced with bioprostheses. We use a hybrid Arbitrary Lagrangian-Eulerian/immersogeometric framework to accommodate the analysis of cardiac hemodynamics and heart valve structural mechanics in a moving fluid domain. The motion of the endocardium is obtained from a cardiac biomechanics simulation and provided as an input to the proposed numerical framework. The results from the simulations in this work indicate that the replacement of the native mitral valve with a tri-radially symmetric bioprosthesis dramatically changes the ventricular hemodynamics. Most significantly, the vortical motion in the left ventricle is found to reverse direction after mitral valve replacement. This study demonstrates that the proposed computational FSI framework is capable of simulating complex multiphysics problems and can provide an in-depth understanding of the cardiac mechanics.

11.
Biomech Model Mechanobiol ; 20(1): 223-241, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32809131

RESUMO

Atrioventricular heart valves (AHVs) regulate the unidirectional flow of blood through the heart by opening and closing of the leaflets, which are supported in their functions by the chordae tendineae (CT). The leaflets and CT are primarily composed of collagen fibers that act as the load-bearing component of the tissue microstructures. At the CT-leaflet insertion, the collagen fiber architecture is complex, and has been of increasing focus in the previous literature. However, these previous studies have not been able to quantify the load-dependent changes in the tissue's collagen fiber orientations and alignments. In the present study, we address this gap in knowledge by quantifying the changes in the collagen fiber architecture of the mitral and tricuspid valve's strut CT-leaflet insertions in response to the applied loads by using a unique approach, which combines polarized spatial frequency domain imaging with uniaxial mechanical testing. Additionally, we characterized these microstructural changes across the same specimen without the need for tissue fixatives. We observed increases in the collagen fiber alignments in the CT-leaflet insertion with increased loading, as described through the degree of optical anisotropy. Furthermore, we used a leaflet-CT-papillary muscle entity method during uniaxial testing to quantify the chordae tendineae mechanics, including the derivation of the Ogden-type constitutive modeling parameters. The results from this study provide a valuable insight into the load-dependent behaviors of the strut CT-leaflet insertion, offering a research avenue to better understand the relationship between tissue mechanics and the microstructure, which will contribute to a deeper understanding of AHV biomechanics.


Assuntos
Cordas Tendinosas/fisiologia , Colágenos Fibrilares/química , Valvas Cardíacas/fisiologia , Animais , Anisotropia , Fenômenos Biomecânicos , Birrefringência , Feminino , Masculino , Suínos , Valva Tricúspide/fisiologia , Suporte de Carga
12.
Proc Natl Acad Sci U S A ; 117(32): 19007-19016, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32709744

RESUMO

Valvular heart disease has recently become an increasing public health concern due to the high prevalence of valve degeneration in aging populations. For patients with severely impacted aortic valves that require replacement, catheter-based bioprosthetic valve deployment offers a minimally invasive treatment option that eliminates many of the risks associated with surgical valve replacement. Although recent percutaneous device advancements have incorporated thinner, more flexible biological tissues to streamline safer deployment through catheters, the impact of such tissues in the complex, mechanically demanding, and highly dynamic valvular system remains poorly understood. The present work utilized a validated computational fluid-structure interaction approach to isolate the behavior of thinner, more compliant aortic valve tissues in a physiologically realistic system. This computational study identified and quantified significant leaflet flutter induced by the use of thinner tissues that initiated blood flow disturbances and oscillatory leaflet strains. The aortic flow and valvular dynamics associated with these thinner valvular tissues have not been previously identified and provide essential information that can significantly advance fundamental knowledge about the cardiac system and support future medical device innovation. Considering the risks associated with such observed flutter phenomena, including blood damage and accelerated leaflet deterioration, this study demonstrates the potentially serious impact of introducing thinner, more flexible tissues into the cardiac system.


Assuntos
Valva Aórtica/química , Doenças das Valvas Cardíacas/fisiopatologia , Animais , Valva Aórtica/anatomia & histologia , Valva Aórtica/fisiopatologia , Valva Aórtica/cirurgia , Fenômenos Biomecânicos , Bovinos , Doenças das Valvas Cardíacas/cirurgia , Próteses Valvulares Cardíacas , Hemodinâmica , Humanos , Modelos Cardiovasculares
13.
Int J Numer Method Biomed Eng ; 36(7): e3346, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32362054

RESUMO

Current clinical assessment of functional tricuspid valve regurgitation relies on metrics quantified from medical imaging modalities. Although these clinical methodologies are generally successful, the lack of detailed information about the mechanical environment of the valve presents inherent challenges for assessing tricuspid valve regurgitation. In the present study, we have developed a finite element-based in silico model of one porcine tricuspid valve (TV) geometry to investigate how various pathological conditions affect the overall biomechanical function of the TV. There were three primary observations from our results. Firstly, the results of the papillary muscle (PM) displacement study scenario indicated more pronounced changes in the TV biomechanical function. Secondly, compared to uniform annulus dilation, nonuniform dilation scenario induced more evident changes in the von Mises stresses (83.8-125.3 kPa vs 65.1-84.0 kPa) and the Green-Lagrange strains (0.52-0.58 vs 0.47-0.53) for the three TV leaflets. Finally, results from the pulmonary hypertension study scenario showed opposite trends compared to the PM displacement and annulus dilation scenarios. Furthermore, various chordae rupture scenarios were simulated, and the results showed that the chordae tendineae attached to the TV anterior and septal leaflets may be more critical to proper TV function. This in silico modeling-based study has provided a deeper insight into the tricuspid valve pathologies that may be useful, with moderate extensions, for guiding clinical decisions. NOVELTY STATEMENT: The novelties of the research are summarized below: A comprehensive in silico pilot study of how isolated functional tricuspid regurgitation pathologies and ruptured chordae tendineae would alter the tricuspid valve function; An extensive analysis of the tricuspid valve function, including mechanical quantities (eg, the von Mises stress and the Green-Lagrange strain) and clinically-relevant geometry metrics (eg, the tenting area and the coaptation height); and A developed computational modeling pipeline that can be extended to evaluate patient-specific tricuspid valve geometries and enhance the current clinical diagnosis and treatment of tricuspid regurgitation.


Assuntos
Insuficiência da Valva Tricúspide , Valva Tricúspide , Animais , Cordas Tendinosas , Simulação por Computador , Humanos , Projetos Piloto , Suínos , Valva Tricúspide/diagnóstico por imagem , Insuficiência da Valva Tricúspide/diagnóstico por imagem
14.
Ann Biomed Eng ; 48(5): 1463-1474, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32006267

RESUMO

Proper blood flow through the atrioventricular heart valves (AHVs) relies on the holistic function of the valve and subvalvular structures, and a failure of any component can lead to life-threatening heart disease. A comprehension of the mechanical characteristics of healthy valvular components is necessary for the refinement of heart valve computational models. In previous studies, the chordae tendineae have been mechanically characterized as individual structures, usually in a clamping-based approach, which may not accurately reflect the in vivo chordal interactions with the leaflet insertion and papillary muscles. In this study, we performed uniaxial mechanical testing of strut chordae tendineae of the AHVs under a unique tine-based leaflet-chordae-papillary muscle testing to observe the chordae mechanics while preserving the subvalvular component interactions. Results of this study provided insight to the disparity of chordae tissue stress-stretch responses between the mitral valve (MV) and the tricuspid valve (TV) under their respective emulated physiological loading. Specifically, strut chordae tendineae of the MV anterior leaflet had peak stretches of 1.09-1.16, while peak stretches of 1.08-1.11 were found for the TV anterior leaflet strut chordae. Constitutive parameters were also derived for the chordae tissue specimens using an Ogden model, which is useful for AHV computational model refinement. Results of this study are beneficial to the eventual improvement of treatment methods for valvular disease.


Assuntos
Cordas Tendinosas/fisiologia , Valva Mitral/fisiologia , Músculos Papilares/fisiologia , Valva Tricúspide/fisiologia , Animais , Fenômenos Biomecânicos , Suínos
15.
Sci Rep ; 9(1): 18560, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31811244

RESUMO

Bioprosthetic heart valves (BHVs) are commonly used as heart valve replacements but they are prone to fatigue failure; estimating their remaining life directly from medical images is difficult. Analyzing the valve performance can provide better guidance for personalized valve design. However, such analyses are often computationally intensive. In this work, we introduce the concept of deep learning (DL) based finite element analysis (DLFEA) to learn the deformation biomechanics of bioprosthetic aortic valves directly from simulations. The proposed DL framework can eliminate the time-consuming biomechanics simulations, while predicting valve deformations with the same fidelity. We present statistical results that demonstrate the high performance of the DLFEA framework and the applicability of the framework to predict bioprosthetic aortic valve deformations. With further development, such a tool can provide fast decision support for designing surgical bioprosthetic aortic valves. Ultimately, this framework could be extended to other BHVs and improve patient care.


Assuntos
Bioprótese/efeitos adversos , Desenho Assistido por Computador , Aprendizado Profundo , Próteses Valvulares Cardíacas/efeitos adversos , Desenho de Prótese/métodos , Fenômenos Biomecânicos , Técnicas de Apoio para a Decisão , Estudos de Viabilidade , Análise de Elementos Finitos , Implante de Prótese de Valva Cardíaca/efeitos adversos , Implante de Prótese de Valva Cardíaca/instrumentação , Valvas Cardíacas/diagnóstico por imagem , Valvas Cardíacas/fisiologia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Modelos Cardiovasculares , Falha de Prótese , Tomografia Computadorizada por Raios X
16.
Bioengineering (Basel) ; 6(2)2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31121881

RESUMO

Proper tricuspid valve (TV) function is essential to unidirectional blood flow through the right side of the heart. Alterations to the tricuspid valvular components, such as the TV annulus, may lead to functional tricuspid regurgitation (FTR), where the valve is unable to prevent undesired backflow of blood from the right ventricle into the right atrium during systole. Various treatment options are currently available for FTR; however, research for the tricuspid heart valve, functional tricuspid regurgitation, and the relevant treatment methodologies are limited due to the pervasive expectation among cardiac surgeons and cardiologists that FTR will naturally regress after repair of left-sided heart valve lesions. Recent studies have focused on (i) understanding the function of the TV and the initiation or progression of FTR using both in-vivo and in-vitro methods, (ii) quantifying the biomechanical properties of the tricuspid valve apparatus as well as its surrounding heart tissue, and (iii) performing computational modeling of the TV to provide new insight into its biomechanical and physiological function. This review paper focuses on these advances and summarizes recent research relevant to the TV within the scope of FTR. Moreover, this review also provides future perspectives and extensions critical to enhancing the current understanding of the functioning and remodeling tricuspid valve in both the healthy and pathophysiological states.

17.
Nanobiomedicine (Rij) ; 6: 1849543519880762, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31908670

RESUMO

The purpose of this study was to investigate the efficacy of targeting peptides chemotherapy to overcome adverse event in the conventional chemotherapy for human hepatocellular carcinoma. Previously we reported several cancer-targeting peptides that bind specifically to cancer cells and their vascular endothelia: L-peptide (anti-cancer cell membrane), RLLDTNRPLLPY; SP-94-peptide (anti-hepatoma cell membrane), SFSHHTPILP; PC5-52-peptide (anti-tumor endothelia), SVSVGMKPSPRP; and control peptide, RLLDTNRGGGGG. In this study, these peptides were linked to liposomal iron oxide nanoparticles to localize the targeted tumor cells and endothelia, and to dextran-coated liposomal doxorubicin (L-D) to treat nonobese diabetic severe combined immunodeficient mice bearing hepatoma xenografts. Our results showed that L-peptide-linked liposomal doxorubicin could inhibit tumor growth with very mild adverse events. Use of the control peptide led to a decrease in the xenograft size but also led to marked apoptotic change in the visceral organ. In conclusion, L-peptide-linked liposomal doxorubicin, SP-94-peptide, and PC5-52-peptide can be used for the treatment of hepatoma xenografts in nonobese diabetic severe combined immunodeficient mice with minimal adverse events.

18.
Artigo em Inglês | MEDLINE | ID: mdl-32831419

RESUMO

The transcatheter aortic valve replacement (TAVR) has emerged as a minimally invasive alternative to surgical treatments of valvular heart disease. TAVR offers many advantages, however, the safe anchoring of the transcatheter heart valve (THV) in the patients anatomy is key to a successful procedure. In this paper, we develop and apply a novel immersogeometric fluid-structure interaction (FSI) framework for the modeling and simulation of the TAVR procedure to study the anchoring ability of the THV. To account for physiological realism, methods are proposed to model and couple the main components of the system, including the arterial wall, blood flow, valve leaflets, skirt, and frame. The THV is first crimped and deployed into an idealized ascending aorta. During the FSI simulation, the radial outward force and friction force between the aortic wall and the THV frame are examined over the entire cardiac cycle. The ratio between these two forces is computed and compared with the experimentally estimated coefficient of friction to study the likelihood of valve migration.

19.
Comput Methods Appl Mech Eng ; 330: 522-546, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29736092

RESUMO

This work formulates frictionless contact between solid bodies in terms of a repulsive potential energy term and illustrates how numerical integration of the resulting forces is computationally similar to the "pinball algorithm" proposed and studied by Belytschko and collaborators in the 1990s. We thereby arrive at a numerical approach that has both the theoretical advantages of a potential-based formulation and the algorithmic simplicity, computational efficiency, and geometrical versatility of pinball contact. The singular nature of the contact potential requires a specialized nonlinear solver and an adaptive time stepping scheme to ensure reliable convergence of implicit dynamic calculations. We illustrate the effectiveness of this numerical method by simulating several benchmark problems and the structural mechanics of the right atrioventricular (tricuspid) heart valve. Atrioventricular valve closure involves contact between every combination of shell surfaces, edges of shells, and cables, but our formulation handles all contact scenarios in a unified manner. We take advantage of this versatility to demonstrate the effects of chordal rupture on tricuspid valve coaptation behavior.

20.
J Biomech ; 74: 23-31, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29735263

RESUMO

This paper considers an anisotropic hyperelastic soft tissue model, originally proposed for native valve tissue and referred to herein as the Lee-Sacks model, in an isogeometric thin shell analysis framework that can be readily combined with immersogeometric fluid-structure interaction (FSI) analysis for high-fidelity simulations of bioprosthetic heart valves (BHVs) interacting with blood flow. We find that the Lee-Sacks model is well-suited to reproduce the anisotropic stress-strain behavior of the cross-linked bovine pericardial tissues that are commonly used in BHVs. An automated procedure for parameter selection leads to an instance of the Lee-Sacks model that matches biaxial stress-strain data from the literature more closely, over a wider range of strains, than other soft tissue models. The relative simplicity of the Lee-Sacks model is attractive for computationally-demanding applications such as FSI analysis and we use the model to demonstrate how the presence and direction of material anisotropy affect the FSI dynamics of BHV leaflets.


Assuntos
Próteses Valvulares Cardíacas , Modelos Teóricos , Animais , Anisotropia , Bovinos , Elasticidade , Hemodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...