Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes Dev ; 35(15-16): 1079-1092, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34266888

RESUMO

Chromosome gains and losses are a frequent feature of human cancers. However, how these aberrations can outweigh the detrimental effects of aneuploidy remains unclear. An initial comparison of existing chromosomal instability (CIN) mouse models suggests that aneuploidy accumulates to low levels in these animals. We therefore developed a novel mouse model that enables unprecedented levels of chromosome missegregation in the adult animal. At the earliest stages of T-cell development, cells with random chromosome gains and/or losses are selected against, but CIN eventually results in the expansion of progenitors with clonal chromosomal imbalances. Clonal selection leads to the development of T-cell lymphomas with stereotypic karyotypes in which chromosome 15, containing the Myc oncogene, is gained with high prevalence. Expressing human MYC from chromosome 6 (MYCChr6) is sufficient to change the karyotype of these lymphomas to include universal chromosome 6 gains. Interestingly, while chromosome 15 is still gained in MYCChr6 tumors after genetic ablation of the endogenous Myc locus, this chromosome is not efficiently gained after deletion of one copy of Rad21, suggesting a synergistic effect of both MYC and RAD21 in driving chromosome 15 gains. Our results show that the initial detrimental effects of random missegregation are outbalanced by clonal selection, which is dictated by the chromosomal location and nature of certain genes and is sufficient to drive cancer with high prevalence.


Assuntos
Aneuploidia , Instabilidade Cromossômica , Animais , Transformação Celular Neoplásica/genética , Instabilidade Cromossômica/genética , Aberrações Cromossômicas , Cariótipo , Camundongos , Prevalência , Células-Tronco
2.
Cell ; 169(2): 229-242.e21, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28388408

RESUMO

Phenotypic variability is a hallmark of diseases involving chromosome gains and losses, such as Down syndrome and cancer. Allelic variances have been thought to be the sole cause of this heterogeneity. Here, we systematically examine the consequences of gaining and losing single or multiple chromosomes to show that the aneuploid state causes non-genetic phenotypic variability. Yeast cell populations harboring the same defined aneuploidy exhibit heterogeneity in cell-cycle progression and response to environmental perturbations. Variability increases with degree of aneuploidy and is partly due to gene copy number imbalances, suggesting that subtle changes in gene expression impact the robustness of biological networks and cause alternate behaviors when they occur across many genes. As inbred trisomic mice also exhibit variable phenotypes, we further propose that non-genetic individuality is a universal characteristic of the aneuploid state that may contribute to variability in presentation and treatment responses of diseases caused by aneuploidy.


Assuntos
Aneuploidia , Heterogeneidade Genética , Fenótipo , Animais , Ciclo Celular , Divisão Celular , Dano ao DNA , Regulação da Expressão Gênica , Cinética , Camundongos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética
3.
Cell ; 154(5): 1127-1139, 2013 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-23993100

RESUMO

Following DNA replication, eukaryotic cells must biorient all sister chromatids prior to cohesion cleavage at anaphase. In animal cells, sister chromatids gradually biorient during prometaphase, but current models of mitosis in S. cerevisiae assume that biorientation is established shortly after S phase. This assumption is based on the observation of a bilobed distribution of yeast kinetochores early in mitosis and suggests fundamental differences between yeast mitosis and mitosis in animal cells. By applying super-resolution imaging methods, we show that yeast and animal cells share the key property of gradual and stochastic chromosome biorientation. The characteristic bilobed distribution of yeast kinetochores, hitherto considered synonymous for biorientation, arises from kinetochores in mixed attachment states to microtubules, the length of which discriminates bioriented from syntelic attachments. Our results offer a revised view of mitotic progression in S. cerevisiae that augments the relevance of mechanistic information obtained in this powerful genetic system for mammalian mitosis.


Assuntos
Cromossomos Fúngicos/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Anáfase , Aurora Quinases , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Cinetocoros/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fase S , Proteínas de Saccharomyces cerevisiae/genética , Fuso Acromático
4.
Mutat Res ; 614(1-2): 3-15, 2007 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-16890248

RESUMO

In previous studies it was shown that nucleotide excision repair (NER) is strongly attenuated at the global genome level in terminally differentiated neuron-like cells. NER was measured in several human acute myeloid leukemia cell lines, before and after differentiation into macrophage-like cells. Repair of cisplatin intrastrand GTG crosslinks in differentiated cells was strongly attenuated. There were also some variations between repair levels in naïve cells, but these were not correlated with the degree of differentiation. By contrast, the proficient repair of UV-induced (6-4)pyrimidine-pyrimidone photoproducts [(6-4)PPs] was not affected by differentiation. Although cyclobutane pyrimidine dimers (CPDs) were poorly repaired at the global genome level in all cell lines, differentiated or not, they were very efficiently removed from the transcribed strand of an active gene, indicating that transcription-coupled repair (TCR) is proficient in each cell line. CPDs were also removed from the non-transcribed strand of an active gene better than at the overall global genome level. This relatively efficient repair of the non-transcribed strand of active genes, when compared with global genomic repair (GGR), has been described previously in neuron-like cells and termed differentiation-associated repair (DAR). Here we show that it also can occur in actively growing cells that display poor GGR.


Assuntos
Reparo do DNA , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Antineoplásicos/farmacologia , Sequência de Bases , Diferenciação Celular , Linhagem Celular Tumoral , Cisplatino/farmacologia , Adutos de DNA/metabolismo , Dano ao DNA , Reparo do DNA/genética , DNA de Neoplasias/efeitos dos fármacos , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , DNA de Neoplasias/efeitos da radiação , Expressão Gênica , Genes p53 , Humanos , Leucemia Mieloide Aguda/patologia , Fenótipo , Dímeros de Pirimidina/metabolismo
5.
J Microbiol Methods ; 67(3): 507-26, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16973226

RESUMO

Criteria for sub-typing of microbial organisms by DNA sequencing proposed by Olive and Bean were applied to several genes in Escherichia coli to identify targets for the development of microbial source tracking assays. Based on the aforementioned criteria, the icd (isocitrate dehydrogenase), and putP (proline permease) genes were excluded as potential targets due to their high rates of horizontal gene transfer; the rrs (16S rRNA) gene was excluded as a target due to the presence of multiple gene copies, with different sequences in a single genome. Based on the above criteria, the mdh (malate dehydrogenase) gene was selected as a target for development of a microbial source tracking assay. The mdh assay was optimized to analyze a 150 bp fragment corresponding to residues G191 to R240 (helices H10 and H11) of the Mdh catalytic domain. 295 fecal isolates (52 horse, 50 deer, 72 dog, 52 seagull and 69 human isolates) were sequenced and analyzed. Target DNA sequences for isolates from horse, dog plus deer, and seagull formed identifiable groupings. Sequences from human isolates, aside from a low level (ca. 15%) human specific sequence, did not group; nevertheless, other hosts could be distinguished from human. Positive and negative predictive values for two- and three-way host comparisons ranged from 60% to 90% depending on the focus host. False positive rates were below 10%. Multiple E. coli isolates from individual fecal samples exhibited high levels of sequence homogeneity, i.e. typically only one to two mdh sequences were observed per up to five E. coli isolates from a single fecal sample. Among all isolates sequenced from fecal samples from each host, sequence homogeneity decreased in the following order: horse>dog>deer>human and gull. For in-library isolates, blind analysis of fecal isolates (n=12) from four hosts known to contain host specific target sequences was 100% accurate and 100% reproducible for both DNA sequence and host identification. For blind analysis of non-library isolates, 18/19 isolates (94.7%) matched one or more library sequences for the corresponding host. Ten of eleven geographical outlier fecal isolates from Florida had mdh sequences that were identical to in-library sequences for the corresponding host from California. The mdh assay was successfully applied to environmental isolates from an underground telephone vault in California, with 4 of 5 isolates matching sequences in the mdh library. 146 sequences of the 645bp mdh fragment from five host sources were translated into protein sequence and aligned. Seven unique Mdh protein sequences, which contained eight polymorphic sites, were identified. Six of the polymorphic sites were in the NAD+ binding domain and two were in the catalytic domain. All of the polymorphic sites were located in surface exposed regions of the protein. None of the non-silent mutations of the Mdh protein were in the 150bp mdh target. The advantages and disadvantages of the assay compared to established source tracking methods are discussed.


Assuntos
Técnicas de Tipagem Bacteriana , Infecções por Escherichia coli/microbiologia , Escherichia coli/classificação , Escherichia coli/genética , Malato Desidrogenase/genética , Epidemiologia Molecular/métodos , Análise de Sequência de DNA , Animais , Sequência de Bases , Domínio Catalítico/genética , Charadriiformes/microbiologia , Cervos/microbiologia , Cães , Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Fezes/microbiologia , Genes Bacterianos , Cavalos/microbiologia , Humanos , Malato Desidrogenase/química , Dados de Sequência Molecular , Mutação , Polimorfismo Genético , Estrutura Terciária de Proteína , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...