Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
J Chem Inf Model ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39045738

RESUMO

Knotted proteins are present in nature, but there is still an open issue regarding the existence of a universal role for these remarkable structures. To address this question, we used classical molecular dynamics (MD) simulations combined with in vitro experiments to investigate the role of the Gordian knot in the catalytic activity of UCH-L1. To create an unknotted form of UCH-L1, we modified its amino acid sequence by truncating several residues from its N-terminus. Remarkably, we find that deleting the first two N-terminal residues leads to a partial loss of enzyme activity with conservation of secondary structural content and knotted topological state. This happens because the integrity of the N-terminus is critical to ensure the correct alignment of the catalytic triad. However, the removal of five residues from the N-terminus, which significantly disrupts the native structure and the topological state, leads to a complete loss of enzymatic activity. Overall, our findings indicate that UCH-L1's catalytic activity depends critically on the integrity of the N-terminus and the secondary structure content, with the latter being strongly coupled with the knotted topological state.

2.
JCI Insight ; 9(10)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775156

RESUMO

Since its emergence, SARS-CoV-2 has been continuously evolving, hampering the effectiveness of current vaccines against COVID-19. mAbs can be used to treat patients at risk of severe COVID-19. Thus, the development of broadly protective mAbs and an understanding of the underlying protective mechanisms are of great importance. Here, we isolated mAbs from donors with breakthrough infection with Omicron subvariants using a single-B cell screening platform. We identified a mAb, O5C2, which possesses broad-spectrum neutralization and antibody-dependent cell-mediated cytotoxic activities against SARS-CoV-2 variants, including EG.5.1. Single-particle analysis by cryo-electron microscopy revealed that O5C2 targeted an unusually large epitope within the receptor-binding domain of spike protein that overlapped with the angiotensin-converting enzyme 2 binding interface. Furthermore, O5C2 effectively protected against BA.5 Omicron infection in vivo by mediating changes in transcriptomes enriched in genes involved in apoptosis and interferon responses. Our findings provide insights into the development of pan-protective mAbs against SARS-CoV-2.


Assuntos
Anticorpos Antivirais , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2/imunologia , Humanos , COVID-19/imunologia , COVID-19/virologia , Anticorpos Antivirais/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/química , Animais , Camundongos , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Microscopia Crioeletrônica , Epitopos/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Feminino
3.
4.
J Biol Chem ; 300(5): 107230, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537699

RESUMO

Arsenite-induced stress granule (SG) formation can be cleared by the ubiquitin-proteasome system aided by the ATP-dependent unfoldase p97. ZFAND1 participates in this pathway by recruiting p97 to trigger SG clearance. ZFAND1 contains two An1-type zinc finger domains (ZF1 and ZF2), followed by a ubiquitin-like domain (UBL); but their structures are not experimentally determined. To shed light on the structural basis of the ZFAND1-p97 interaction, we determined the atomic structures of the individual domains of ZFAND1 by solution-state NMR spectroscopy and X-ray crystallography. We further characterized the interaction between ZFAND1 and p97 by methyl NMR spectroscopy and cryo-EM. 15N spin relaxation dynamics analysis indicated independent domain motions for ZF1, ZF2, and UBL. The crystal structure and NMR structure of UBL showed a conserved ß-grasp fold homologous to ubiquitin and other UBLs. Nevertheless, the UBL of ZFAND1 contains an additional N-terminal helix that adopts different conformations in the crystalline and solution states. ZFAND1 uses the C-terminal UBL to bind to p97, evidenced by the pronounced line-broadening of the UBL domain during the p97 titration monitored by methyl NMR spectroscopy. ZFAND1 binding induces pronounced conformational heterogeneity in the N-terminal domain of p97, leading to a partial loss of the cryo-EM density of the N-terminal domain of p97. In conclusion, this work paved the way for a better understanding of the interplay between p97 and ZFAND1 in the context of SG clearance.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Modelos Moleculares , Grânulos de Estresse , Proteína com Valosina , Humanos , Arsenitos/metabolismo , Arsenitos/química , Cristalografia por Raios X , Ligação Proteica , Domínios Proteicos , Grânulos de Estresse/metabolismo , Ubiquitina/metabolismo , Proteína com Valosina/metabolismo , Proteína com Valosina/química , Proteína com Valosina/genética , Dedos de Zinco , Dobramento de Proteína , Imageamento por Ressonância Magnética , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
5.
Cell ; 187(5): 1296-1311.e26, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38428397

RESUMO

Most membrane proteins are modified by covalent addition of complex sugars through N- and O-glycosylation. Unlike proteins, glycans do not typically adopt specific secondary structures and remain very mobile, shielding potentially large fractions of protein surface. High glycan conformational freedom hinders complete structural elucidation of glycoproteins. Computer simulations may be used to model glycosylated proteins but require hundreds of thousands of computing hours on supercomputers, thus limiting routine use. Here, we describe GlycoSHIELD, a reductionist method that can be implemented on personal computers to graft realistic ensembles of glycan conformers onto static protein structures in minutes. Using molecular dynamics simulation, small-angle X-ray scattering, cryoelectron microscopy, and mass spectrometry, we show that this open-access toolkit provides enhanced models of glycoprotein structures. Focusing on N-cadherin, human coronavirus spike proteins, and gamma-aminobutyric acid receptors, we show that GlycoSHIELD can shed light on the impact of glycans on the conformation and activity of complex glycoproteins.


Assuntos
Glicoproteínas , Simulação de Dinâmica Molecular , Humanos , Microscopia Crioeletrônica , Glicoproteínas/química , Glicosilação , Polissacarídeos/química
6.
Biochem Biophys Res Commun ; 696: 149470, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38244314

RESUMO

Knotted proteins are fascinating to biophysicists because of their robust ability to fold into intricately defined three-dimensional structures with complex and topologically knotted arrangements. Exploring the biophysical properties of the knotted proteins is of significant interest, as they could offer enhanced chemical, thermal, and mechanostabilities. A true mathematical knot requires a closed path; in contrast, knotted protein structures have open N- and C-termini. To address the question of how a truly knotted protein differs from the naturally occurring counterpart, we enzymatically cyclized a 31 knotted YibK protein from Haemophilus influenza (HiYibK) to investigate the impact of path closure on its structure-function relationship and folding stability. Through the use of a multitude of structural and biophysical tools, including X-ray crystallography, NMR spectroscopy, small angle X-ray scattering, differential scanning calorimetry, and isothermal calorimetry, we showed that the path closure minimally perturbs the native structure and ligand binding of HiYibK. Nevertheless, the cyclization did alter the folding stability and mechanism according to chemical and thermal unfolding analysis. These molecular insights contribute to our fundamental understanding of protein folding and knotting that could have implications in the protein design with higher stabilities.


Assuntos
Dobramento de Proteína , Proteínas , Ciclização , Modelos Moleculares , Proteínas/química , Cristalografia por Raios X , Conformação Proteica
7.
J Mol Biol ; 436(4): 168438, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38185323

RESUMO

A mutant of ubiquitin C-terminal hydrolase L1 (UCHL1) detected in early-onset neurodegenerative patients, UCHL1R178Q, showed higher catalytic activity than wild-type UCHL1 (UCHL1WT). Lying within the active-site pocket, the arginine is part of an interaction network that holds the catalytic histidine in an inactive arrangement. However, the structural basis and mechanism of enzymatic activation upon glutamine substitution was not understood. We combined X-ray crystallography, protein nuclear magnetic resonance (NMR) analysis, enzyme kinetics, covalent inhibition analysis, and biophysical measurements to delineate activating factors in the mutant. While the crystal structure of UCHL1R178Q showed nearly the same arrangement of the catalytic residues and active-site pocket, the mutation caused extensive alteration in the chemical environment and dynamics of more than 30 residues, some as far as 15 Å away from the site of mutation. Significant broadening of backbone amide resonances in the HSQC spectra indicates considerable backbone dynamics changes in several residues, in agreement with solution small-angle X-ray scattering (SAXS) analyses which indicate an overall increase in protein flexibility. Enzyme kinetics show the activation is due to a kcat effect despite a slightly weakened substrate affinity. In line with this, the mutant shows a higher second-order rate constant (kinact/Ki) in a reaction with a substrate-derived irreversible inhibitor, Ub-VME, compared to the wild-type enzyme, an observation indicative of a more reactive catalytic cysteine in the mutant. Together, the observations underscore structural plasticity as a factor contributing to enzyme kinetic behavior which can be modulated through mutational effects.


Assuntos
Domínio Catalítico , Cisteína , Doenças Neurodegenerativas , Ubiquitina Tiolesterase , Humanos , Sítios de Ligação/genética , Cisteína/química , Cisteína/genética , Cinética , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Espalhamento a Baixo Ângulo , Ubiquitina Tiolesterase/química , Ubiquitina Tiolesterase/genética , Difração de Raios X , Doenças Neurodegenerativas/genética
8.
J Biol Chem ; 300(1): 105553, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072060

RESUMO

Proteins can spontaneously tie a variety of intricate topological knots through twisting and threading of the polypeptide chains. Recently developed artificial intelligence algorithms have predicted several new classes of topological knotted proteins, but the predictions remain to be authenticated experimentally. Here, we showed by X-ray crystallography and solution-state NMR spectroscopy that Q9PR55, an 89-residue protein from Ureaplasma urealyticum, possesses a novel 71 knotted topology that is accurately predicted by AlphaFold 2, except for the flexible N terminus. Q9PR55 is monomeric in solution, making it the smallest and most complex knotted protein known to date. In addition to its exceptional chemical stability against urea-induced unfolding, Q9PR55 is remarkably robust to resist the mechanical unfolding-coupled proteolysis by a bacterial proteasome, ClpXP. Our results suggest that the mechanical resistance against pulling-induced unfolding is determined by the complexity of the knotted topology rather than the size of the molecule.


Assuntos
Inteligência Artificial , Proteínas de Bactérias , Dobramento de Proteína , Ureaplasma urealyticum , Modelos Moleculares , Peptídeos , Proteínas de Bactérias/química , Estrutura Terciária de Proteína
9.
Nat Commun ; 14(1): 8519, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129386

RESUMO

The cyclic GMP-AMP synthase (cGAS)/stimulator of interferon gene (STING) signaling pathway plays a critical protective role against viral infections. Metazoan STING undergoes multilayers of regulation to ensure specific signal transduction. However, the mechanisms underlying the regulation of bacterial STING remain unclear. In this study, we determined the crystal structure of anti-parallel dimeric form of bacterial STING, which keeps itself in an inactive state by preventing cyclic dinucleotides access. Conformational transition between inactive and active states of bacterial STINGs provides an on-off switch for downstream signaling. Some bacterial STINGs living in extreme environment contain an insertion sequence, which we show codes for an additional long lid that covers the ligand-binding pocket. This lid helps regulate anti-phage activities. Furthermore, bacterial STING can bind cyclic di-AMP in a triangle-shaped conformation via a more compact ligand-binding pocket, forming spiral-shaped protofibrils and higher-order fibril filaments. Based on the differences between cyclic-dinucleotide recognition, oligomerization, and downstream activation of different bacterial STINGs, we proposed a model to explain structure-function evolution of bacterial STINGs.


Assuntos
Bactérias , Transdução de Sinais , Animais , Ligantes , Bactérias/metabolismo , Genes Bacterianos , Nucleotidiltransferases/metabolismo , Imunidade Inata
10.
Curr Opin Struct Biol ; 83: 102709, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37778185

RESUMO

Topologically knotted proteins have entangled structural elements within their native structures that cannot be disentangled simply by pulling from the N- and C-termini. Systematic surveys have identified different types of knotted protein structures, constituting as much as 1% of the total entries within the Protein Data Bank. Many knotted proteins rely on their knotted structural elements to carry out evolutionarily conserved biological functions. Being knotted may also provide mechanical stability to withstand unfolding-coupled proteolysis. Reconfiguring a knotted protein topology by circular permutation or cyclization provides insights into the importance of being knotted in the context of folding and functions. With the explosion of predicted protein structures by artificial intelligence, we are now entering a new era of exploring the entangled protein universe.


Assuntos
Inteligência Artificial , Dobramento de Proteína , Proteínas , Conformação Proteica
11.
Mol Ther ; 31(11): 3322-3336, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37689971

RESUMO

The ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulting in the emergence of new variants that are resistant to existing vaccines and therapeutic antibodies, has raised the need for novel strategies to combat the persistent global COVID-19 epidemic. In this study, a monoclonal anti-human angiotensin-converting enzyme 2 (hACE2) antibody, ch2H2, was isolated and humanized to block the viral receptor-binding domain (RBD) binding to hACE2, the major entry receptor of SARS-CoV-2. This antibody targets the RBD-binding site on the N terminus of hACE2 and has a high binding affinity to outcompete the RBD. In vitro, ch2H2 antibody showed potent inhibitory activity against multiple SARS-CoV-2 variants, including the most antigenically drifted and immune-evading variant Omicron. In vivo, adeno-associated virus (AAV)-mediated delivery enabled a sustained expression of monoclonal antibody (mAb) ch2H2, generating a high concentration of antibodies in mice. A single administration of AAV-delivered mAb ch2H2 significantly reduced viral RNA load and infectious virions and mitigated pulmonary pathological changes in mice challenged with SARS-CoV-2 Omicron BA.5 subvariant. Collectively, the results suggest that AAV-delivered hACE2-blocking antibody provides a promising approach for developing broad-spectrum antivirals against SARS-CoV-2 and potentially other hACE2-dependent pathogens that may emerge in the future.


Assuntos
Anticorpos Monoclonais , Anticorpos Amplamente Neutralizantes , COVID-19 , Animais , Humanos , Camundongos , Enzima de Conversão de Angiotensina 2/genética , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais , COVID-19/terapia , Dependovirus/genética , RNA Viral , SARS-CoV-2/genética , Anticorpos Amplamente Neutralizantes/farmacologia , Anticorpos Amplamente Neutralizantes/uso terapêutico
12.
ACS Synth Biol ; 12(8): 2310-2319, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37556858

RESUMO

We used the deep learning tool ProteinMPNN to redesign ubiquitin (Ub) as a specific and functionally stimulating/enhancing binder of the Rsp5 E3 ligase. We generated 20 extensively mutated─up to 37 of 76 residues─recombinant Ub variants (UbVs), named R1 to R20, displaying well-folded structures and high thermal stabilities. These UbVs can also form stable complexes with Rsp5, as predicted using AlphaFold2. Three of the UbVs bound to Rsp5 with low micromolar affinity, with R4 and R12 effectively enhancing the Rsp5 activity six folds. AlphaFold2 predicts that R4 and R12 bind to Rsp5's exosite in an identical manner to the Rsp5-Ub template, thereby allosterically activating Rsp5-Ub thioester formation. Thus, we present a virtual solution for rapidly and cost-effectively designing UbVs as functional modulators of Ub-related enzymes.


Assuntos
Proteínas de Saccharomyces cerevisiae , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo
13.
JACS Au ; 3(7): 1864-1875, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37502146

RESUMO

The intracellular phosphatase domain of the receptor-type protein tyrosine phosphatase alpha (PTPRA) is known to regulate various signaling pathways related to cell adhesion through c-Src kinase activation. In contrast, the functional significance of its relatively short, intrinsically disordered, and heavily glycosylated ectodomain remains unclear. Through detailed mass spectrometry analyses of a combination of protease and glycosidase digests, we now provide the first experimental evidence for its site-specific glycosylation pattern. This includes the occurrence of O-glycan at the N-glycosylation sequon among the more than 30 O-glycosylation sites confidently identified beside the 7 N-glycosylation sites. The closely spaced N- and O-glycans appear to have mutually limited the extent of further galactosylation and sialylation. An immature smaller form of full-length PTPRA was found to be deficient in O-glycosylation, most likely due to failure to transit the Golgi. N-glycosylation, on the other hand, is dispensable for cell surface expression and contributes less than the extensive O-glycosylation to the overall solution structure of the ectodomain. The glycosylation information is combined with the overall structural features of the ectodomain derived from small-angle X-ray scattering and high-speed atomic force microscopy monitoring to establish a dynamic structural model of the densely glycosylated PTPRA ectodomain. The observed high structural flexibility, as manifested by continuous transitioning from fully to partially extended and fold-back conformations, suggests that the receptor-type phosphatase is anchored to the membrane and kept mostly at a monomeric state through an ectodomain shaped and fully shielded by glycosylation.

14.
Biochem Biophys Res Commun ; 672: 81-88, 2023 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-37343318

RESUMO

CP74 is an engineered circular permutant of a deep trefoil knotted SpoU-TrmD (SPOUT) RNA methyl transferase protein YbeA from E. coli. We have previously established that the circular permutation unties the knotted topology of YbeA and CP74 forms a domain-swapped dimer with a large dimeric interface of ca. 4600 Å2. To understand the impact of domain-swapping and the newly formed hinge region joining the two folded domains on the folding and stability of CP74, the five equally spaced tryptophan residues were individually substituted into phenylalanine to monitor their conformational and stability changes by a battery of biophysical tools. Far-UV circular dichroism, intrinsic fluorescence, and small-angle X-ray scattering dictated minimal global conformational perturbations to the native structures in the tryptophan variants. The structures of the tryptophan variants also showed the conservation of the domain-swapped ternary structure with the exception that the W72F exhibited significant asymmetry in the α-helix 5. Comparative global thermal and chemical stability analyses indicated the pivotal role of W100 in the folding of CP74 followed by W19 and W72. Solution-state NMR spectroscopy and hydrogen-deuterium exchange mass spectrometry further revealed the accumulation of a native-like intermediate state in which the hinge region made important contributions to maintain the domain-swapped ternary structure of CP74.


Assuntos
Escherichia coli , Dobramento de Proteína , Dicroísmo Circular , Cinética , Proteínas , Triptofano
15.
Proteomics ; 23(20): e2300143, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37271932

RESUMO

Complete coverage of all N-glycosylation sites on the SARS-CoV2 spike protein would require the use of multiple proteases in addition to trypsin. Subsequent identification of the resulting glycopeptides by searching against database often introduces assignment errors due to similar mass differences between different permutations of amino acids and glycosyl residues. By manually interpreting the individual MS2 spectra, we report here the common sources of errors in assignment, especially those introduced by the use of chymotrypsin. We show that by applying a stringent threshold of acceptance, erroneous assignment by the commonly used Byonic software can be controlled within 15%, which can be reduced further if only those also confidently identified by a different search engine, pGlyco3, were considered. A representative site-specific N-glycosylation pattern could be constructed based on quantifying only the overlapping subset of N-glycopeptides identified at higher confidence. Applying the two complimentary glycoproteomic software in a concerted data analysis workflow, we found and confirmed that glycosylation at several sites of an unstable Omicron spike protein differed significantly from those of the stable trimeric product of the parental D614G variant.

16.
Methods Enzymol ; 682: 351-374, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36948707

RESUMO

Since the discovery of protein tyrosine phosphorylation as one of the critical post-translational modifications, it has been well known that the activity of protein tyrosine kinases (PTKs) is tightly regulated. On the other hand, protein tyrosine phosphatases (PTPs) are often regarded to act constitutively active, but recently we and others have shown that many PTPs are expressed in an inactive form due to allosteric inhibition by their unique structural features. Furthermore, their cellular activity is highly regulated in a spatiotemporal manner. In general, PTPs share a conserved catalytic domain comprising about 280 residues that is flanked by either an N-terminal or a C-terminal non-catalytic segment, which differs significantly in size and structure from each other and is known to regulate specific PTP's catalytic activity. The well-characterized non-catalytic segments can be globular or intrinsically disordered. In this work, we have focused on the T-Cell Protein Tyrosine Phosphatase (TCPTP/PTPN2) and demonstrated how the hybrid biophysical-biochemical methods can be applied to unravel the underlying mechanism through which TCPTP's catalytic activity is regulated by the non-catalytic C-terminal segment. Our analysis showed that TCPTP is auto-inhibited by its intrinsically disordered tail and trans-activated by Integrin alpha-1's cytosolic region.


Assuntos
Proteína Tirosina Fosfatase não Receptora Tipo 2 , Transdução de Sinais , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Fosforilação , Proteínas Tirosina Quinases/metabolismo , Processamento de Proteína Pós-Traducional
17.
Methods Enzymol ; 675: 275-297, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36220273

RESUMO

Understanding the mechanisms by which proteins fold and thread into topologically knotted conformations has been challenging because of the apparent complexity associated with the folding and threading events. Nevertheless, many experimental and computational studies have provided insights into the folding pathways of knotted proteins and showed that most of the knotted proteins could spontaneously and reversibly fold into knotted topologies with highly populated intermediates and, at times, through multiple folding pathways. Our laboratory has reported the folding mechanisms of a variety of knotted proteins that have different knot types, ranging from the simplest trefoil 31 knot to the most complex Stevedore's 61 knot. Therefore, we focused on using multiplex thermodynamics and kinetics measurements to tease out unique information associated with different structural probes to obtain a more comprehensive overview of the folding mechanisms of the knotted proteins of interest. In this chapter, we shall discuss the use of different biophysical tools and analytical models to glean mechanistic insights into how intricate polypeptides attain knotted topologies.


Assuntos
Dobramento de Proteína , Proteínas , Peptídeos , Conformação Proteica , Proteínas/química , Termodinâmica
18.
Methods Enzymol ; 675: 299-321, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36220274

RESUMO

Mutations on the spike (S) protein of SARS-CoV-2 could induce structural changes that help increase viral transmissibility and enhance resistance to antibody neutralization. Here, we report a robust workflow to prepare recombinant S protein variants and its host receptor angiotensin-convert enzyme 2 (ACE2) by using a mammalian cell expression system. The functional states of the S protein variants are investigated by cryo-electron microscopy (cryo-EM) and negative staining electron microscopy (NSEM) to visualize their molecular structures in response to mutations, receptor binding, antibody binding, and environmental changes. The folding stabilities of the S protein variants can be deduced from morphological changes based on NSEM imaging analysis. Differential scanning calorimetry provides thermodynamic information to complement NSEM. Impacts of the mutations on host receptor binding and antibody neutralization are in vitro by kinetic binding analyses in addition to atomic insights gleaned from cryo-electron microscopy (cryo-EM). This experimental strategy is generally applicable to studying the molecular basis of host-pathogen interactions.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2/genética , Angiotensinas/genética , Angiotensinas/metabolismo , Animais , COVID-19/genética , Microscopia Crioeletrônica , Humanos , Mamíferos/metabolismo , Modelos Moleculares , Mutação , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , Receptores Virais/química , Receptores Virais/genética , Receptores Virais/metabolismo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Relação Estrutura-Atividade
19.
Nat Commun ; 13(1): 4877, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986008

RESUMO

Porcine epidemic diarrhea (PED) is a highly contagious swine disease caused by porcine epidemic diarrhea virus (PEDV). PED causes enteric disorders with an exceptionally high fatality in neonates, bringing substantial economic losses in the pork industry. The trimeric spike (S) glycoprotein of PEDV is responsible for virus-host recognition, membrane fusion, and is the main target for vaccine development and antigenic analysis. The atomic structures of the recombinant PEDV S proteins of two different strains have been reported, but they reveal distinct N-terminal domain 0 (D0) architectures that may correspond to different functional states. The existence of the D0 is a unique feature of alphacoronavirus. Here we combined cryo-electron tomography (cryo-ET) and cryo-electron microscopy (cryo-EM) to demonstrate in situ the asynchronous S protein D0 motions on intact viral particles of a highly virulent PEDV Pintung 52 strain. We further determined the cryo-EM structure of the recombinant S protein derived from a porcine cell line, which revealed additional domain motions likely associated with receptor binding. By integrating mass spectrometry and cryo-EM, we delineated the complex compositions and spatial distribution of the PEDV S protein N-glycans, and demonstrated the functional role of a key N-glycan in modulating the D0 conformation.


Assuntos
Alphacoronavirus , Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Vírus da Diarreia Epidêmica Suína/fisiologia , Glicoproteína da Espícula de Coronavírus , Suínos
20.
J Biomed Sci ; 29(1): 49, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35799178

RESUMO

BACKGROUND: With the continuous emergence of new SARS-CoV-2 variants that feature increased transmission and immune escape, there is an urgent demand for a better vaccine design that will provide broader neutralizing efficacy. METHODS: We report an mRNA-based vaccine using an engineered "hybrid" receptor binding domain (RBD) that contains all 16 point-mutations shown in the currently prevailing Omicron and Delta variants. RESULTS: A booster dose of hybrid vaccine in mice previously immunized with wild-type RBD vaccine induced high titers of broadly neutralizing antibodies against all tested SARS-CoV-2 variants of concern (VOCs). In naïve mice, hybrid vaccine generated strong Omicron-specific neutralizing antibodies as well as low but significant titers against other VOCs. Hybrid vaccine also elicited CD8+/IFN-γ+ T cell responses against a conserved T cell epitope present in wild type and all VOCs. CONCLUSIONS: These results demonstrate that inclusion of different antigenic mutations from various SARS-CoV-2 variants is a feasible approach to develop cross-protective vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes , COVID-19/prevenção & controle , Humanos , Camundongos , SARS-CoV-2/genética , Vacinas Sintéticas , Vacinas de mRNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...