Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36824890

RESUMO

A core challenge of olfactory neuroscience is to understand how neural representations of odor are generated and progressively transformed across different layers of the olfactory circuit into formats that support perception and behavior. The encoding of odor by odorant receptors in the input layer of the olfactory system reflects, at least in part, the chemical relationships between odor compounds. Neural representations of odor in higher order associative olfactory areas, generated by random feedforward networks, are expected to largely preserve these input odor relationships1-3. We evaluated these ideas by examining how odors are represented at different stages of processing in the olfactory circuit of the vinegar fly D. melanogaster. We found that representations of odor in the mushroom body (MB), a third-order associative olfactory area in the fly brain, are indeed structured and invariant across flies. However, the structure of MB representational space diverged significantly from what is expected in a randomly connected network. In addition, odor relationships encoded in the MB were better correlated with a metric of the similarity of their distribution across natural sources compared to their similarity with respect to chemical features, and the converse was true for odor relationships encoded in primary olfactory receptor neurons (ORNs). Comparison of odor coding at primary, secondary, and tertiary layers of the circuit revealed that odors were significantly regrouped with respect to their representational similarity across successive stages of olfactory processing, with the largest changes occurring in the MB. The non-linear reorganization of odor relationships in the MB indicates that unappreciated structure exists in the fly olfactory circuit, and this structure may facilitate the generalization of odors with respect to their co-occurence in natural sources.

2.
Cell Rep ; 35(8): 109158, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34038717

RESUMO

Modulation of neuronal thresholds is ubiquitous in the brain. Phenomena such as figure-ground segmentation, motion detection, stimulus anticipation, and shifts in attention all involve changes in a neuron's threshold based on signals from larger scales than its primary inputs. However, this modulation reduces the accuracy with which neurons can represent their primary inputs, creating a mystery as to why threshold modulation is so widespread in the brain. We find that modulation is less detrimental than other forms of neuronal variability and that its negative effects can be nearly completely eliminated if modulation is applied selectively to sparsely responding neurons in a circuit by inhibitory neurons. We verify these predictions in the retina where we find that inhibitory amacrine cells selectively deliver modulation signals to sparsely responding ganglion cell types. Our findings elucidate the central role that inhibitory neurons play in maximizing information transmission under modulation.


Assuntos
Neurônios/metabolismo , Neurotransmissores/metabolismo , Transmissão Sináptica/imunologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA