Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Bull (Beijing) ; 67(7): 755-761, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36546140

RESUMO

In December 2020, Chang'E-5 (CE-5), China's first lunar sample return mission, successfully collected samples totaling 1731 g from the northern Oceanus Procellarum. The landing site was located in a young mare plain, a great distance from those of Apollo and Luna missions. These young mare basalts bear critical scientific significance as they could shed light on the nature of the lunar interior (composition and structure) as well as the recent volcanism on the Moon. In this article, we investigated a CE-5 basalt sample (CE5C0000YJYX065) using a combination of state-of-art techniques, including high resolution X-ray tomographic microscopy (HR-XTM), energy dispersive X-ray spectroscopy (EDS)-based scanning electron microscope (SEM), and electron probe microanalysis (EPMA) to reveal its 3D petrology and minerology. Our results show that this sample has a fine- to medium-grained subophitic texture, with sparse olivine phenocrysts setting in the groundmass of pyroxene, plagioclase, ilmenite and trace amounts of other phases. It has an extremely high ilmenite modal abundance (17.8 vol%) and contains a significant amount (0.5 vol%) of Ca-phosphate grains. The mineral chemistry is in excellent agreement with that of Apollo and Luna high-Ti basalts. The major phase pyroxenes also display strong chemical zoning with compositions following the trends observed in Apollo high-Ti basalts. Based on current data, we came to the conclusion that CE5C0000YJYX065 is a high-Ti mare basalt with a rare earth element (REE) enriched signature. This provides a rigid ground-truth for the geological context at the CE-5 landing site and clarifies the ambiguity inferred from remote sensing surveys.

2.
Sci Adv ; 8(25): eabm8890, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35749504

RESUMO

Meteoroids/asteroids could deposit energy to Earth during their entries, which arouses great concerns. Strewn field, as a product of meteoroids/asteroids breakup, comprehensively reflects the trajectory, dynamics, and physical properties of meteoroids/asteroids. It typically has a length of several to a dozen kilometers. Nevertheless, the recently found massive Aletai irons in the northwest China comprise the longest known strewn field of ~430 kilometers. This implies that the dynamics of Aletai could be unique. Petrographic and trace elemental studies suggest that all the Aletai masses exhibit unique compositions (IIIE anomalous), indicating that they were from the same fall event. Numerical modeling suggests that the stone skipping-like trajectory associated with a shallow entry angle (e.g., ~6.5° to 7.3°) is responsible for Aletai's exceptionally long strewn field if a single-body entry scenario is considered. The stone skipping-like trajectory would not result in the deposition of large impact energy on the ground but may lead to the dissipation of energy during its extremely long-distance flight.

3.
Sci Rep ; 9(1): 5727, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30952935

RESUMO

Chlorine, an extremely hydrophilic volatile element, provides important information regarding the origin of intrinsic volatiles in the Moon. Lunar apatite was found to have a wider spread of δ37Cl (from -1 to +40‰ versus standard mean ocean chloride) than most terrestrial and chondritic ones (0 ± 0.5‰). However, the provenance of the elevated lunar δ37Cl is still enigmatic. Here we report new isotopic data for H and Cl in apatite from three lunar meteorites and discuss possible mechanisms for Cl isotopic fractionation of the Moon. The apatite grain in Dhofar 458 has an average δ37Cl value of +76‰, indicative of an extremely heavy Cl reservoir in the Moon. Volatile loss associated with the Moon-forming Giant Impact and the formation of lunar magma ocean could account for the large Cl isotopic fractionation of the Moon. The observed H2O contents (220-5200 ppm), δD (-100 to +550‰) and δ37Cl values (+3.8 - +81.1‰) in lunar apatite could be understood if late accretion of hydrous components were added to the Moon after the fractionation of Cl isotopes. The heterogeneous distribution of lunar Cl isotopes is probably resulted from complex lunar formation and differentiation processes.

4.
Opt Express ; 22(18): 21280-91, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25321507

RESUMO

Acquiring accurate visible and near-infrared (VisNIR) reflectance values of atmosphereless celestial bodies is very important in inferring the physical and geological properties of their surficial materials. When a calibration target with inherent non-trivial absorption features is used, the calibrated reflectance would essentially always contain spurious spectral features and the spectroscopic data may easily be misinterpreted if the artifact is not properly taken care of. We demonstrate with laboratory reflectance measurements that the VisNIR spectra of three typical planetary surface analog materials, lunar simulant JSC-1A, olivine and pyroxene grains, have an artificial peak at 2.1 µm when Spectralon-type plaque made of polytetrafluoroethylene is used as the calibration target in the NIR region. The degree of severity of this artifact is dependent on the strength of the 2.0 µm absorption feature of the mineral. Empirical methods are proposed to remove this artifact to bring the spectra close to that calibrated by a gold mirror which does not have any conspicuous absorption features in the NIR region. The correction methods may be applied to reflectance data acquired by the VisNIR imaging spectrometer onboard the Yutu Rover of the Chinese Chang'E 3 lunar mission which employed an onboard Spectralon-type calibration target.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...