Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38932206

RESUMO

Infectious spleen and kidney necrosis virus (ISKNV) infections can induce the process of host cellular autophagy but have rarely been identified within the molecular autophagy signaling pathway. In the present study, we demonstrated that ISKNV induces ROS-mediated oxidative stress signals for the induction of 5'AMP-activated protein kinase/mechanistic target of rapamycin kinase (AMPK/mTOR)-mediated autophagy and upregulation of host antioxidant enzymes in fish GF-1 cells. We also examined ISKNV-induced oxidative stress, finding that reactive oxidative species (ROS) increased by 1.5-fold and 2.5-fold from day 2 to day 3, respectively, as assessed by the H2DCFDA assay for tracing hydrogen peroxide (H2O2), which was blocked by NAC treatment in fish GF-1 cells. Furthermore, ISKNV infection was shown to trigger oxidative stress/Nrf2 signaling from day 1 to day 3; this event was then correlated with the upregulation of antioxidant enzymes such as Cu/ZnSOD and MnSOD and was blocked by the antioxidant NAC. Using an MDC assay, TEM analysis and autophagy marker LC3-II/I ratio, we found that ROS stress can regulate autophagosome formation within the induction of autophagy, which was inhibited by NAC treatment in GF-1 cells. Through signal analysis, we found that AMPK/mTOR flux was modulated through inhibition of mTOR and activation of AMPK, indicating phosphorylation levels of mTOR Ser 2448 and AMPK Thr 172 from day 1 to day 3; however, this process was reversed by NAC treatment, which also caused a reduction in virus titer (TCID50%) of up to 1000 times by day 3 in GF-1 cells. Thus, ISKNV-induced oxidative stress signaling is blocked by antioxidant NAC, which can also either suppress mTOR/AMPK autophagic signals or reduce viral replication. These findings may provide the basis for the creation of DNA control and treatment strategies.


Assuntos
Proteínas Quinases Ativadas por AMP , Antioxidantes , Autofagia , Estresse Oxidativo , Transdução de Sinais , Serina-Treonina Quinases TOR , Replicação Viral , Replicação Viral/efeitos dos fármacos , Animais , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular , Proteínas Quinases Ativadas por AMP/metabolismo , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo
2.
Front Microbiol ; 13: 958476, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304944

RESUMO

Infectious spleen and kidney necrosis virus (ISKNV) infections can trigger host cell death and are correlated with viral replication; however, they have rarely been considered in terms of the host organelle involvement. In the present study, we demonstrated that ISKNV triggered an oxidative stress signal in the Nrf2-mediated oxidative stress response and induced stress signals for Bax/Bak-mediated host cell death in fish GF-1 cells. The results showed that after ISKNV infection, the levels of reactive oxidative species (ROS) increased by 60-80% from day 3 to day 5, as assessed by an H2DCFDA assay for tracing hydrogen peroxide (H2O2), which was correlated with up to a one-fold change in the fish GF-1 cells. Furthermore, we found that ISKNV infection induced Nrf2-mediated ROS stress signals from D1 to D5, which were correlated with the upregulation of antioxidant enzymes, such as catalase, SOD1, and SOD2; these effects were blocked by the antioxidants GSH and NAC. By analyzing Nrf2-mediated ROS stress signals for cell death regulation via an apoptotic assay, we found that treatment with antioxidants reduced annexin-V-positive signals by 10% (GSH) to 15% (NAC); moreover, necrotic-positive signals were reduced by 6% (GSH) and 32% (NAC) at day 5 (D5) in GF-1 cells, as indicated by PI staining. Furthermore, we found that Nrf2-mediated ROS stress regulated mitochondrion-mediated Bax/Bak death signals at D3 and D5; this was effectively blocked by antioxidant treatment in the GF-1 cells, as demonstrated by a JC1 assay (ΔΨm) and western blot analysis. In addition, we found that downstream signals for caspase-9 and -3 activation were apparently blocked by antioxidant treatment at D3 and D5. Finally, we found that treatment with GSH and NAC reduced major capsid protein (MCP) expression and virus titer (TCID50%) by up to 15-fold at D5 in GF-1 cells. Thus, our data suggest that ISKNV can induce ROS production, which triggers Nrf2-mediated stress signals. Then, these stress signals can regulate mitochondrion-mediated Bax/Bak apoptotic signaling, which is connected to downstream caspase-9 and -3 activation. If ISKNV-induced Nrf2-mediated stress signaling is blocked, then the antioxidants GSH and NAC can also suppress apoptotic signals or reduce viral replication. These findings may provide insights into the control and treatment of double-stranded DNA viruses.

3.
Viruses ; 14(5)2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35632664

RESUMO

The molecular pathogenesis of infectious spleen and kidney necrosis virus (ISKNV) infections is important but has rarely been studied in connection to host organelle behavior. In the present study, we demonstrated that ISKNV can induce host cell death via a pro-apoptotic Bcl-2 and anti-apoptotic Bcl-2 family member imbalance in mitochondrial membrane potential (MMP or ΔΨm) regulation in GF-1 cells. The results of our study on ISKNV infection showed that it can induce host cell death by up to 80% at day 5 post-infection. Subsequently, in an apoptotic assay, ISKNV infection was seen to induce an increase in Annexin-V-positive signals by 20% and in propidium iodide (PI) staining-positive signals by up to 30% at day 5 (D5) in GF-1 cells. Then, through our studies on the mechanism of cell death in mitochondria function, we found that ISKNV can induce MMP loss by up to 58% and 78% at days 4 and 5 with a JC1 dye staining assay. Furthermore, we found that pro-apoptotic members Bax and Bak were upregulated from the early replication stage (day one) to the late stage (day 5), but the expression profiles were very dynamically different. On the other hand, by Western blotted analysis, the anti-apoptotic members Bcl-2 and Bcl-xL were upregulated very quickly at the same time from day one (two-fold) and continued to maintain this level at day five. Finally, we found that pro-apoptotic death signals strongly activated the downstream signals of caspase-9 and -3. Taken together, these results suggest that ISKNV infection can induce Bax/Bak-mediated cell death signaling downstream of caspase-9 and -3 activation. During the viral replication cycle with the cell death induction process, the anti-apoptotic members Bcl-2/Bcl-xL interacted with the pro-apoptotic members Bax/Bak to maintain the mitochondrial function in the dynamic interaction so as to maintain the MMP in GF-1 cells. These findings may provide insights into DNA-virus control and treatment.


Assuntos
Doenças dos Peixes , Iridoviridae , Animais , Apoptose/fisiologia , Proteína X Associada a bcl-2/metabolismo , Caspase 9/metabolismo , Peixes , Mitocôndrias/metabolismo
4.
Fish Shellfish Immunol ; 45(2): 848-57, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26067170

RESUMO

The giant seaperch iridovirus (GSIV) induces host cell apoptosis by a poorly-understood process. In this study, GSIV is shown to upregulate the pro-apoptotic death genes Bax and Bak at the middle replication stage, and factors in the grouper fin cell line (GF-1) are shown to modulate this process. Studying the mechanism of cell death, we found that upregulated, de novo-synthesized Bax and Bak proteins formed heterodimers. This up-regulation process correlated with mitochondrial membrane potential (MMP) loss, increased caspase-3 activity, and increased apoptotic cell death. All effects were diminished by treatment of infected GF-1 cells with the protein synthesis inhibitor cycloheximide. Interestingly, overexpression of the anti-apoptotic gene Bcl-xL also diminished GSIV-induced mitochondria-mediated cell death, increasing host cell viability and decreasing MMP loss at the early replication stage. Our data suggest that GSIV induces GF-1 apoptotic cell death through up-regulation of the pro-apoptotic genes Bax and Bak, which are regulated by Bcl-xL overexpression on mitochondria in GF-1 cells.


Assuntos
Bass , Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/genética , Proteínas de Peixes/genética , Regulação para Cima , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/genética , Animais , Apoptose/genética , Caspase 3/genética , Caspase 3/metabolismo , Linhagem Celular , Infecções por Vírus de DNA/genética , Infecções por Vírus de DNA/metabolismo , Infecções por Vírus de DNA/virologia , Doenças dos Peixes/metabolismo , Doenças dos Peixes/virologia , Proteínas de Peixes/metabolismo , Iridovirus/fisiologia , Potencial da Membrana Mitocondrial , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...