Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37420809

RESUMO

Formaldehyde (HCHO) is a tracer of volatile organic compounds (VOCs), and its concentration has gradually decreased with the reduction in VOC emissions in recent years, which puts forward higher requirements for the detection of trace HCHO. Therefore, a quantum cascade laser (QCL) with a central excitation wavelength of 5.68 µm was applied to detect the trace HCHO under an effective absorption optical pathlength of 67 m. An improved, dual-incidence multi-pass cell, with a simple structure and easy adjustment, was designed to further improve the absorption optical pathlength of the gas. The instrument detection sensitivity of 28 pptv (1σ) was achieved within a 40 s response time. The experimental results show that the developed HCHO detection system is almost unaffected by the cross interference of common atmospheric gases and the change of ambient humidity. Additionally, the instrument was successfully deployed in a field campaign, and it delivered results that correlated well with those of a commercial instrument based on continuous wave cavity ring-down spectroscopy (R2 = 0.967), which indicates that the instrument has a good ability to monitor ambient trace HCHO in unattended continuous operation for long periods of time.


Assuntos
Formaldeído , Lasers Semicondutores , Incidência , Gases , Análise Espectral
2.
Onco Targets Ther ; 13: 2573-2581, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32273727

RESUMO

BACKGROUND: Long non-coding RNA regulator of reprogramming (LINC-RoR) has shown different expressions in a variety of tumors as a stem cell inducer through reprogramming regulation. However, its role and regulation mechanisms in colorectal cancer (CRC) are still unclear. MATERIALS AND METHODS: Quantitative real-time PCR and Western blot were performed to examine LINC-RoR expression in paired CRC samples and cell lines. The relationship of LINC-RoR expression with clinicopathological characteristics and clinical outcomes was analyzed. The biological functions of LINC-RoR were studied by MTS and colony formation in vitro. Cell apoptosis was analysed by the flow cytometry. The Dual-luciferase reporter assays and RIP assays were performed to explore the regulatory relationship of LINC-RoR. RESULTS: In this study, we found that LINC-RoR was upregulated in CRC cell lines and tissues. High expression of LINC-RoR was associated with poorer survival time and multivariate analysis results showed that LINC-RoR was an independent risk factor of tumor malignancy progression. Overexpression of LINC-RoR promoted the cell proliferation and knocked down it can reverse the effect in vitro. The regulatory network of LINC-ROR/miR-6833-3p/SMC4 was predicted with bioinformatics analysis tools and validated via dual-luciferase reporter assays and RIP. Further study revealed that in overexpression LINC-RoR cell lines the expression of miR-6833-3p was downregulated and miR-6833-3p can inhibit its target gene SMC4, the apoptosis-related protein. CONCLUSION: We concluded that LINC-RoR functions as an oncogene in CRC through the miR-6833-3p/SMC4 pathway.

3.
J Environ Sci (China) ; 47: 219-229, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27593289

RESUMO

Aging of secondary organic aerosol (SOA) particles formed from OH- initiated oxidation of ethylbenzene in the presence of high mass (100-300µg/m(3)) concentrations of (NH4)2SO4 seed aerosol was investigated in a home-made smog chamber in this study. The chemical composition of aged ethylbenzene SOA particles was measured using an aerosol laser time-of-flight mass spectrometer (ALTOFMS) coupled with a Fuzzy C-Means (FCM) clustering algorithm. Experimental results showed that nitrophenol, ethyl-nitrophenol, 2,4-dinitrophenol, methyl glyoxylic acid, 5-ethyl-6-oxo-2,4-hexadienoic acid, 2-ethyl-2,4-hexadiendioic acid, 2,3-dihydroxy-5-ethyl-6-oxo-4-hexenoic acid, 1H-imidazole, hydrated N-glyoxal substituted 1H-imidazole, hydrated glyoxal dimer substituted imidazole, 1H-imidazole-2-carbaldehyde, N-glyoxal substituted hydrated 1H-imidazole-2-carbaldehyde and high-molecular-weight (HMW) components were the predominant products in the aged particles. Compared to the previous aromatic SOA aging studies, imidazole compounds, which can absorb solar radiation effectively, were newly detected in aged ethylbenzene SOA in the presence of high concentrations of (NH4)2SO4 seed aerosol. These findings provide new information for discussing aromatic SOA aging mechanisms.


Assuntos
Aerossóis/química , Poluentes Atmosféricos/química , Sulfato de Amônio/química , Derivados de Benzeno/química , Modelos Químicos , Oxirredução
4.
Environ Sci Technol ; 49(17): 10380-8, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26274814

RESUMO

C6 hexenols are one of the most significant groups of volatile organic compounds with biogenic emissions. The lack of corresponding kinetic parameters and product information on their oxidation reactions will result in incomplete atmospheric chemical mechanisms and models. In this paper, experimental and theoretical studies are reported for the reactions of OH radicals with a series of C6 hexenols, (Z)-2-hexen-1-ol, (Z)-3-hexen-1-ol, (Z)-4-hexen-1-ol, (E)-2-hexen-1-ol, (E)-3-hexen-1-ol, and (E)-4-hexen-1-ol, at 298 K and 1.01 × 10(5) Pa. The corresponding rate constants were 8.53 ± 1.36, 10.1 ± 1.6, 7.86 ± 1.30, 8.08 ± 1.33, 9.10 ± 1.50, and 7.14 ± 1.20 (in units of 10(-11) cm(3) molecule(-1) s(-1)), respectively, measured by gas chromatography with a flame ionization detector (GC-FID), using a relative technique. Theoretical calculations concerning the OH-addition and H-abstraction reaction channels were also performed for these reactions to further understand the reaction mechanism and the relative importance of the H-abstraction reaction. By contrast to previously reported results, the H-abstraction channel is a non-negligible reaction channel for reactions of OH radicals with these hexenols. The rate constants of the H-abstraction channel are comparable with those for the OH-addition channel and contribute >20% for most of the studied alcohols, even >50% for (E)-3-hexen-1-ol. Thus, H-abstraction channels may have an important role in the reactions of these alcohols with OH radicals and must be considered in certain atmospheric chemical mechanisms and models.


Assuntos
Hexanóis/química , Radical Hidroxila/química , Modelos Teóricos , Prótons , Atmosfera/química , Cinética
5.
J Phys Chem A ; 118(2): 508-16, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24377698

RESUMO

Exploration of the low-lying structures of atomic or molecular clusters remains a fundamental problem in nanocluster science. Basin hopping is typically employed in conjunction with random motion, which is a perturbation of a local minimum structure. We have combined two different sampling technologies, "random sampling" and "compressed sampling", to explore the potential energy surface of molecular clusters. We used the method to study water, nitrate/water, and oxalate/water cluster systems at the MP2/aug-cc-pVDZ level of theory. An isomer of the NO3(-)(H2O)3 cluster molecule with a 3D structure was lower in energy than the planar structure, which had previously been reported by experimental study as the lowest-energy structure. The lowest-energy structures of the NO3(-)(H2O)5 and NO3(-)(H2O)7 clusters were found to have structures similar to pure (H2O)8 and (H2O)10 clusters, which contradicts previous experimental result by Wang et al.(J. Chem. Phys. 2002, 116, 561-570). The new minimum energy structures for C2O4(2-)(H2O)5 and C2O4(2-)(H2O)6 are found by our calculations.

6.
Anal Chem ; 85(4): 2260-8, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23320530

RESUMO

Despite the significant progress in the measurements of aerosol extinction and absorption using spectroscopy approaches such as cavity ring-down spectroscopy (CRDS) and photoacoustic spectroscopy (PAS), the widely used single-wavelength instruments may suffer from the interferences of gases absorption present in the real environment. A second instrument for simultaneous measurement of absorbing gases is required to characterize the effect of light extinction resulted from gases absorption. We present in this paper the development of a blue light-emitting diode (LED)-based incoherent broad-band cavity-enhanced spectroscopy (IBBCEAS) approach for broad-band measurements of wavelength-resolved aerosol extinction over the spectral range of 445-480 nm. This method also allows for simultaneous measurement of trace gases absorption present in the air sample using the same instrument. On the basis of the measured wavelength-dependent aerosol extinction cross section, the real part of the refractive index (RI) can be directly retrieved in a case where the RI does not vary strongly with the wavelength over the relevant spectral region. Laboratory-generated monodispersed aerosols, polystyrene latex spheres (PSL) and ammonium sulfate (AS), were employed for validation of the RI determination by IBBCEAS measurements. On the basis of a Mie scattering model, the real parts of the aerosol RI were retrieved from the measured wavelength-resolved extinction cross sections for both aerosol samples, which are in good agreement with the reported values. The developed IBBCEAS instrument was deployed for simultaneous measurements of aerosol extinction coefficient and NO(2) concentration in ambient air in a suburban site during two representative days.


Assuntos
Aerossóis/química , Espectrofotometria , Absorção , Sulfato de Amônio/química , Gases/química , Óxido Nítrico/análise , Óxido Nítrico/química , Tamanho da Partícula , Poliestirenos/química
7.
J Environ Sci (China) ; 24(5): 860-4, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22893963

RESUMO

Secondary organic aerosol (SOA) formed from C1-initiated oxidation of toluene was investigated in a home-made smog chamber. The size distribution and chemical composition of SOA particles were measured using aerodynamic particle sizer spectrometer and the aerosol laser time-of-flight mass spectrometer (ALTOFMS), respectively. According to a large number of single aerosol diameter and mass spectra, the size distribution and chemical composition of SOA were obtained statistically. Experimental results showed that SOA particles created by C1-initiated oxidation of toluene is predominantly in the form of fine particles, which have diameters less than 2.5 microm (i.e., PM2.5), and glyoxal, benzaldehyde, benzyl alcohol, benzoquinone, benzoic acid, benzyl hydroperoxide and benzyl methyl nitrate are the major products components in the SOA. The possible reaction mechanisms leading to these products are also proposed.


Assuntos
Aerossóis/química , Cloretos/química , Compostos Orgânicos/química , Tamanho da Partícula , Tolueno/química , Lasers , Luz , Espectrometria de Massas , Oxirredução/efeitos da radiação , Fatores de Tempo
8.
J Environ Sci (China) ; 24(12): 2075-82, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23534203

RESUMO

The gas-phase organic compounds resulting from OH-initiated photooxidation of isoprene have been investigated on-line by VUV photoionization mass spectrometry based on synchrotron radiation for the first time. The photoionization efficiency curves of the corresponding gaseous products as well as the chosen standards have been deduced by gating the interested peaks in the photoionization mass spectra while scanning the photon energy simultaneously, which permits the identification of the pivotal gaseous products of the photooxidation of isoprene, such as formaldehyde (10.84 eV), formic acid (11.38 eV), acetone (9.68 eV), glyoxal (9.84 eV), acetic acid (10.75 eV), methacrolein (9.91 eV), and methyl vinyl ketone (9.66 eV). Proposed reaction mechanisms leading to the formation of these key products were discussed, which were completely consistent with the previous works of different groups. The capability of synchrotron radiation photoionization mass spectrometry to directly identify the chemical composition of the gaseous products in a simulation chamber has been demonstrated, and its potential application in related studies of atmospheric oxidation of ambient volatile organic compounds is anticipated.


Assuntos
Butadienos/química , Hemiterpenos/química , Pentanos/química , Butadienos/efeitos da radiação , Hemiterpenos/efeitos da radiação , Espectrometria de Massas , Oxirredução , Pentanos/efeitos da radiação , Síncrotrons
9.
Rapid Commun Mass Spectrom ; 26(2): 189-94, 2012 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-22173807

RESUMO

We report the combination of a vacuum ultraviolet photoionization mass spectrometer, operating on the basis of synchrotron radiation, with an environmental reaction smog chamber for the first time. The gas- and pseudo-particle-phase products of OH-initiated isoprene photooxidation reactions were measured on-line and off-line, respectively, by mass spectrometry. It was observed that aldehydes, methacrolein, methyl vinyl ketone, methelglyoxal, formic acid, and similar compounds are the predominant gas-phase photooxidation products, whereas some multifunctional carbonyls and acids mainly exist in the particle phase. This finding is reasonably consistent with results of studies conducted in other laboratories using different methods. The results indicate that synchrotron radiation photoionization mass spectrometry coupled with a smog chamber is a potentially powerful tool for the study of the mechanism of atmospheric oxidations and the formation of secondary organic aerosols.

10.
Opt Express ; 17(13): 10506-13, 2009 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-19550446

RESUMO

The laser induced predissociation dynamics of the B Rydberg state of CH(3)I following two-photon absorption of a pump pulse was studied with femtosecond pump-probe photoelectron imaging coupled with time-resolved mass spectroscopy. The predissociation lifetime was measured to be 1.55 ps induced by the crossing between the B state and the repulsive A-band. Two possible predissociation channels were observed originating from (a) direct coupling between the B state and the repulsive (3)Q(0) state and (b) a second crossing between the (3)Q(0) and (1)Q(1) states after the coupling between the B and (3)Q(0) states, respectively.

11.
Chemphyschem ; 10(8): 1299-304, 2009 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-19343750

RESUMO

Photodissociation dynamics and rotational wave packet coherences of o-bromofluorobenzene are studied by femtosecond time-resolved photoelectron imaging [figure: see text]. The decay of different photoelectron rings shows the population decay of states from which the lifetimes of different states are determined. The variation of photoelectron angular distributions reflects the evolution of rotational coherences.Photodissociation dynamics and rotational wave packet coherences of o-bromofluorobenzene are studied by femtosecond time-resolved photoelectron imaging (TR-PEI) spectroscopy combined with the (1+2') resonance-enhanced multiphoton ionization (REMPI). Photoelectron kinetic energy and angular distributions indicate ionization dynamics from some Rydberg states at the (1+1') photon energy. The lifetimes of the S(1) (A') and T(2) (A') states are determined from the decay of the photoelectron signals to be 38 ps and 27 ps. The electron population decay of the two states is attributed to predissociation and tunneling dissociation. The variation of time-dependent anisotropy parameters in the first 5 ps shows the rotational wave coherences of molecule.

12.
J Chem Phys ; 130(14): 144309, 2009 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-19368447

RESUMO

Ultrafast processes of p-bromofluorobenzene are studied with femtosecond time-resolved photoelectron imaging spectroscopy. The photoelectron image revealed four photoelectron rings centered at 0.39, 0.86, 1.13, and 1.61 eV, respectively. The inner rings are more anisotropic than the outer rings. The decay traces of the different rings were recorded separately. Sharp photoelectron energy distributions and different anisotropy parameters extracted from the images indicated resonances with Rydberg states at the (1+1(')) photon energy. The quantum defect values of the four Rydberg states were determined to be 0.75, 0.52, 0.36, and approximately 0, respectively, with principal quantum number of 3. The electron dephasing mechanism of the S(1)(B(2)) state corresponds to the intersystem crossing from the S(1)(B(2)) to T(1)(B(2)) state and the predissociation of the S(1)(B(2)) state via the T(1)(B(1)) state. The lifetimes of S(1)(B(2)) and T(1)(B(2)) are determined from the decay of the photoelectron signals to be 40 and 33 ps, respectively. The variety of time-dependent anisotropy parameters in the first 5 ps shows the rotational wave coherences of p-bromofluorobenzene at the S(1)(B(2)) state.

13.
J Chem Phys ; 129(24): 244308, 2008 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-19123508

RESUMO

Photoionization of chlorine and bromine atoms following photodissociation of CH(2)BrCl was studied in the wavelength range of 231-238 nm by photoelectron imaging technique. Final state-specific speed and angular distributions of the photoelectron were recorded. Analysis of relative branching ratios to different levels of Cl(+) and Br(+) revealed that the final ion level distributions are generally dominated by the preservation of the ion-core configuration of the intermediate resonant state. Some J(c) numbers of the intermediate states were newly assigned according to this regulation. The configuration interaction between resonant states and the autoionization in the continuum were also believed to play an important role in the ionization process since some ions that deviate from the regulation mentioned ahead were observed. The angular distributions of the electrons were found to be well characterized by beta(2) and beta(4), although the ionization process of chlorine and bromine atoms involves three photons.

14.
J Phys Chem A ; 111(29): 6813-21, 2007 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-17447741

RESUMO

Photoionization of the iodine atom following methyl iodide A-band photodissociation was studied over the wavelength range of 245.5-261.6 nm by photoelectron imaging technique. Final state-specific speed and angular distributions of the photoelectron were recorded. Two types of the photoelectron resulted from ionizing the I atom from the photodissociation of CH3I were identified: (a) (2+1) REMPI of the ground state I atom, and (b) two-photon excitation of spin-orbit excited I(2P1/2) to autoionizing resonances converging to the 3P1 state of I+. In addition, some weaker signals were attributed to one-photon ionization of I atoms produced in some higher excited states from multiphoton ionization of CH3I followed by dissociation. Analysis of relative branching ratios to different levels of I+ (in case a) revealed that the final ion level distributions are generally dominated by the preservation of the ion-core configuration of the intermediate resonant state. A qualitative interpretation of the electron angular distribution from an autoionization process is also given.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...