Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Rev Rep ; 20(4): 1093-1105, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38457059

RESUMO

Breast cancer, the most prevalent malignancy in women, often progresses to bone metastases, especially in older individuals. Dormancy, a critical aspect of bone-metastasized breast cancer cells (BCCs), enables them to evade treatment and recur. This dormant state is regulated by bone marrow mesenchymal stem cells (BMMSCs) through the secretion of various factors, including those associated with senescence. However, the specific mechanisms by which BMMSCs induce dormancy in BCCs remain unclear. To address this gap, a bone-specific senescence-accelerated murine model, SAMP6, was utilized to minimize confounding systemic age-related factors. Confirming senescence-accelerated osteoporosis, distinct BMMSC phenotypes were observed in SAMP6 mice compared to SAMR1 counterparts. Notably, SAMP6-BMMSCs exhibited premature senescence primarily due to telomerase activity loss and activation of the p21 signaling pathway. Furthermore, the effects of conditioned medium (CM) derived from SAMP6-BMMSCs versus SAMR1-BMMSCs on BCC proliferation were examined. Intriguingly, only CM from SAMP6-BMMSCs inhibited BCC proliferation by upregulating p21 expression in both MCF-7 and MDA-MB-231 cells. These findings suggest that the senescence-associated secretory phenotype (SASP) of BMMSCs suppresses BCC viability by inducing p21, a pivotal cell cycle inhibitor and tumor suppressor. This highlights a heightened susceptibility of BCCs to dormancy in a senescent microenvironment, potentially contributing to the increased incidence of breast cancer bone metastasis and recurrence observed with aging.


Assuntos
Neoplasias da Mama , Células-Tronco Mesenquimais , Fenótipo Secretor Associado à Senescência , Células-Tronco Mesenquimais/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Feminino , Humanos , Animais , Camundongos , Proliferação de Células , Sobrevivência Celular , Senescência Celular , Meios de Cultivo Condicionados/farmacologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Células MCF-7
2.
Cell Prolif ; 57(3): e13554, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37767639

RESUMO

'General requirements for the production of extracellular vesicles derived from human stem cells' is the first guideline for stem cells derived extracellular vesicles in China, jointly drafted and agreed upon by experts from the Chinese Society for Stem Cell Research. This standard specifies the general requirements, process requirements, packaging and labelling requirements and storage requirements for preparing extracellular vesicles derived from human stem cells, which is applicable to the research and production of extracellular vesicles derived from stem cells. It was originally released by the China Society for Cell Biology on 30 August 2022. We hope that the publication of this guideline will promote institutional establishment, acceptance and execution of proper protocols, and accelerate the international standardisation of extracellular vesicles derived from human stem cells.


Assuntos
Vesículas Extracelulares , Células-Tronco , Humanos , China
5.
Int J Oral Sci ; 14(1): 39, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915088

RESUMO

Sympathetic cues via the adrenergic signaling critically regulate bone homeostasis and contribute to neurostress-induced bone loss, but the mechanisms and therapeutics remain incompletely elucidated. Here, we reveal an osteoclastogenesis-centered functionally important osteopenic pathogenesis under sympatho-adrenergic activation with characterized microRNA response and efficient therapeutics. We discovered that osteoclastic miR-21 was tightly regulated by sympatho-adrenergic cues downstream the ß2-adrenergic receptor (ß2AR) signaling, critically modulated osteoclastogenesis in vivo by inhibiting programmed cell death 4 (Pdcd4), and mediated detrimental effects of both isoproterenol (ISO) and chronic variable stress (CVS) on bone. Intriguingly, without affecting osteoblastic bone formation, bone protection against ISO and CVS was sufficiently achieved by a (D-Asp8)-lipid nanoparticle-mediated targeted inhibition of osteoclastic miR-21 or by clinically relevant drugs to suppress osteoclastogenesis. Collectively, these results unravel a previously underdetermined molecular and functional paradigm that osteoclastogenesis crucially contributes to sympatho-adrenergic regulation of bone and establish multiple targeted therapeutic strategies to counteract osteopenias under stresses.


Assuntos
Doenças Ósseas Metabólicas , MicroRNAs , Adrenérgicos/metabolismo , Adrenérgicos/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/farmacologia , Doenças Ósseas Metabólicas/metabolismo , Humanos , Lipossomos , MicroRNAs/genética , Nanopartículas , Osteoclastos , Osteogênese/fisiologia , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/farmacologia
6.
Small Methods ; 6(3): e2100763, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35312228

RESUMO

Innervation and extracellular vesicle secretion co-exist in the local tissue microenvironment for message transfer, but whether they are interconnected to regulate organ homeostasis remains unknown. Sympatho-adrenergic activation is implicated in stress-induced depression and leads to bone loss, but the mechanisms and therapeutics are incompletely elucidated. Here, it is revealed that sympathetic neurostress through the ß1/2 -adrenergic receptor (ß1/2-AR) signaling triggers the transcription response of a microRNA, miR-21, in osteoblasts, which is transferred to osteoclast progenitors via exosomes for dictating osteoclastogenesis. After confirming that miR-21 deficiency retards the ß1/2-AR agonist isoproterenol (ISO)-induced osteopenia, it is shown that the pharmacological inhibition of exosome release by two clinically-relevant drugs, dimethyl amiloride and omeprazole, suppresses osteoblastic miR-21 transfer and ameliorates bone loss under both ISO and chronic variable stress (CVS)-induced depression conditions. A targeted delivery approach to specifically silence osteoblastic miR-21 is further applied, which is effective in rescuing the bone remodeling balance and ameliorating ISO- and CVS-induced osteopenias. These results decipher a previously unrecognized paradigm that neural cues drive exosomal microRNA communication to regulate organ homeostasis and help to establish feasible strategies to counteract bone loss under psychological stresses.


Assuntos
Doenças Ósseas Metabólicas , Exossomos , MicroRNAs , Osso e Ossos , Exossomos/genética , Homeostase , Humanos , MicroRNAs/genética
7.
Stem Cells Int ; 2021: 8138374, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434241

RESUMO

Early orthodontic correction of skeletal malocclusion takes advantage of mechanical force to stimulate unclosed suture remodeling and to promote bone reconstruction; however, the underlying mechanisms remain largely unclear. Gli1+ cells in maxillofacial sutures have been shown to participate in maxillofacial bone development and damage repair. Nevertheless, it remains to be investigated whether these cells participate in mechanical force-induced bone remodeling during orthodontic treatment of skeletal malocclusion. In this study, rapid maxillary expansion (RME) mouse models and mechanical stretch loading cell models were established using two types of transgenic mice which are able to label Gli1+ cells, and we found that Gli1+ cells participated in mechanical force-induced osteogenesis both in vivo and in vitro. Besides, we found mechanical force-induced osteogenesis through inositol 1,4,5-trisphosphate receptor (IP3R), and we observed for the first time that inhibition of Gli1 suppressed an increase in mechanical force-induced IP3R overexpression, suggesting that Gli1+ cells participate in mechanical force-induced osteogenesis through IP3R. Taken together, this study is the first to demonstrate that Gli1+ cells in maxillofacial sutures are involved in mechanical force-induced bone formation through IP3R during orthodontic treatment of skeletal malocclusion. Furthermore, our results provide novel insights regarding the mechanism of orthodontic treatments of skeletal malocclusion.

8.
Stem Cell Res Ther ; 12(1): 395, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34256832

RESUMO

BACKGROUND: Hepatic steatosis is a big hurdle to treat type 2 diabetes (T2D). Fasting-mimicking diet (FMD) has been shown to be an effective intervention in dyslipidemia of T2D. However, fasting may impair the normal glucose metabolism. Human umbilical cord-derived mesenchymal stem cell (UC-MSC) transplantation has been discovered to regulate immune reactions and reduce hyperglycemia in diabetes. However, the effect of UC-MSCs on improving the lipid metabolism disorder is not quite satisfactory. We have investigated the efficacy comparison and interaction between FMD and UC-MSC infusion, aiming to establish effective T2D therapies and explore its mechanism. METHODS: C57/BL6 mice were fed with high-fat diet (HFD) to induce a diet-induced obese (DIO) mouse model. Leptin receptor-deficient (db/db) mice were used for follow-up experiments. DIO or db/db mice were divided into 4 groups: phosphate buffer saline (PBS), UC-MSCs, FMD, and UC-MSCs + FMD. At the end of the study period, mice were fasted and sacrificed, with the measurement of physiological and biochemical indexes. In addition, the fresh liver, skin, and white adipose tissue were analyzed by histology. RESULTS: FMD restored the lipid metabolism in DIO mice, whereas its capacity to rescue hyperglycemia was uncertain. Infusion of UC-MSCs was effective in T2D glycemic control but the impact on dyslipidemia was insufficient. Furthermore, both the glucose and the lipid alterations of DIO and db/db mice recovered after UC-MSCs combined with FMD. It was proved that UC-MSCs promoted FMD effects on ameliorating hyperglycemia and restoring the lipid metabolism in T2D mice, while FMD had little promotion effect on UC-MSCs. Mechanistically, we discovered that UC-MSC infusion significantly modulated systematic inflammatory microenvironment, which contributed to concerted actions with FMD. CONCLUSIONS: We established a strategy that combined UC-MSC infusion and FMD and was effective in treating T2D, which provided potential approaches for developing novel clinical T2D therapies.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Diabetes Mellitus Tipo 2/terapia , Jejum , Controle Glicêmico , Camundongos , Cordão Umbilical
9.
Stem Cells ; 39(7): 838-852, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33621403

RESUMO

Type 2 diabetes mellitus (T2DM) is a major threat to global public health, with increasing prevalence as well as high morbidity and mortality, to which immune dysfunction has been recognized as a crucial contributor. Mesenchymal stromal cells (MSCs), obtained from various sources and possessing potent immunomodulatory abilities, have displayed great therapeutic potential for T2DM. Interestingly, the immunomodulatory capabilities of MSCs are endowed and plastic. Among the multiple mechanisms involved in MSC-mediated immune regulation, the paracrine effects of MSCs have attracted much attention. Of note, extracellular vesicles (EVs), an important component of MSC secretome, have emerged as pivotal mediators of their immunoregulatory effects. Particularly, the necrobiology of MSCs, especially apoptosis, has recently been revealed to affect their immunomodulatory functions in vivo. In specific, a variety of preclinical studies have demonstrated the beneficial effects of MSCs on improving islet function and ameliorating insulin resistance. More importantly, clinical trials have further uncovered the therapeutic potential of MSCs for T2DM. In this review, we outline current knowledge regarding the plasticity and underlying mechanisms of MSC-mediated immune modulation, focusing on the paracrine effects. We also summarize the applications of MSC-based therapies for T2DM in both preclinical studies and clinical trials, with particular emphasis on the modulation of immune system.


Assuntos
Diabetes Mellitus Tipo 2 , Vesículas Extracelulares , Células-Tronco Mesenquimais , Apoptose , Diabetes Mellitus Tipo 2/terapia , Humanos , Imunomodulação
11.
Cell Death Differ ; 28(3): 1041-1061, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33082517

RESUMO

Photoreceptor apoptosis is recognized as one key pathogenesis of retinal degeneration, the counteraction of which represents a promising approach to safeguard visual function. Recently, mesenchymal stem cell transplantation (MSCT) has demonstrated immense potential to treat ocular disorders, in which extracellular vesicles (EVs), particularly exosomes, have emerged as effective ophthalmological therapeutics. However, whether and how MSCT protects photoreceptors against apoptotic injuries remains largely unknown. Here, we discovered that intravitreal MSCT counteracted photoreceptor apoptosis and alleviated retinal morphological and functional degeneration in a mouse model of photoreceptor loss induced by N-methyl-N-nitrosourea (MNU). Interestingly, effects of MSCT were inhibited after blockade of exosomal generation by GW4869 preconditioning. Furthermore, MSC-derived exosomal transplantation (EXOT) effectively suppressed MNU-provoked photoreceptor injury. Notably, therapeutic efficacy of MSCT and EXOT on MNU-induced retinal degeneration was long-lasting as photoreceptor preservance and retinal maintenance were detected even after 1-2 months post to injection for only once. More importantly, using a natural occurring retinal degeneration model caused by a nonsense mutation of Phosphodiesterase 6b gene (Pde6bmut), we confirmed that MSCT and EXOT prevented photoreceptor loss and protected long-term retinal function. In deciphering therapeutic mechanisms regarding potential exosome-mediated communications, we identified that miR-21 critically maintained photoreceptor viability against MNU injury by targeting programmed cell death 4 (Pdcd4) and was transferred from MSC-derived exosomes in vivo for functional regulation. Moreover, miR-21 deficiency aggravated MNU-driven retinal injury and was restrained by EXOT. Further experiments revealed that miR-21 mediated therapeutic effects of EXOT on MNU-induced photoreceptor apoptosis and retinal dysfunction. These findings uncovered the efficacy and mechanism of MSCT-based photoreceptor protection, indicating exosomal miR-21 as a therapeutic for retinal degeneration.


Assuntos
Transplante de Células-Tronco Mesenquimais , MicroRNAs/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Degeneração Retiniana/metabolismo , Degeneração Retiniana/prevenção & controle , Animais , Apoptose , Modelos Animais de Doenças , Feminino , Masculino , Metilnitrosoureia/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Retina/metabolismo , Degeneração Retiniana/induzido quimicamente
13.
Stem Cell Reports ; 15(1): 110-124, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668219

RESUMO

Mesenchymal stem/stromal cells (MSCs) reside in the perivascular niche and modulate tissue/organ homeostasis; however, little is known about whether and how their localization and function are linked. Particularly, whether specific MSC subsets couple with and regulate specialized vessel subtypes is unclear. Here, we show that Gli1+ cells, which are a subpopulation of MSCs couple with and regulate a specialized form of vasculature. The specific capillaries, i.e., CD31hiEMCNhi type H vessels, are the preferable vascular subtype which Gli1+ cells are adjacent to in bone. Gli1+ cells are further identified to be phenotypically coupled with type H endothelium during bone growth and defect healing. Importantly, Gli1+ cell ablation inhibits type H vessel formation associated with suppressed bone generation and regeneration. Mechanistically, Gli1+ cells initiate angiogenesis through Gli and HIF-1α signaling. These findings suggest a morphological and functional framework of Gli1+ cells modulating coupled type H vasculature for tissue homeostasis and regenerative repair.


Assuntos
Capilares/citologia , Neovascularização Fisiológica , Proteína GLI1 em Dedos de Zinco/metabolismo , Animais , Desenvolvimento Ósseo , Osso e Ossos/irrigação sanguínea , Osso e Ossos/patologia , Endotélio/irrigação sanguínea , Deleção de Genes , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos Endogâmicos C57BL , Fenótipo , Transdução de Sinais , Cicatrização
14.
Bone Res ; 8: 19, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351759

RESUMO

The loss-of-function mutations in the ALPL result in hypophosphatasia (HPP), an inborn metabolic disorder that causes skeletal mineralization defects. In adults, the main clinical features are early loss of primary or secondary teeth, osteoporosis, bone pain, chondrocalcinosis, and fractures. However, guidelines for the treatment of adults with HPP are not available. Here, we show that ALPL deficiency caused a reduction in intracellular Ca2+ influx, resulting in an osteoporotic phenotype due to downregulated osteogenic differentiation and upregulated adipogenic differentiation in both human and mouse bone marrow mesenchymal stem cells (BMSCs). Increasing the intracellular level of calcium in BMSCs by ionomycin treatment rescued the osteoporotic phenotype in alpl+/- mice and BMSC-specific (Prrx1-alpl-/-) conditional alpl knockout mice. Mechanistically, ALPL was found to be required for the maintenance of intracellular Ca2+ influx, which it achieves by regulating L-type Ca2+ channel trafficking via binding to the α2δ subunits to regulate the internalization of the L-type Ca2+ channel. Decreased Ca2+ flux inactivates the Akt/GSK3ß/ß-catenin signaling pathway, which regulates lineage differentiation of BMSCs. This study identifies a previously unknown role of the ectoenzyme ALPL in the maintenance of calcium channel trafficking to regulate stem cell lineage differentiation and bone homeostasis. Accelerating Ca2+ flux through L-type Ca2+ channels by ionomycin treatment may be a promising therapeutic approach for adult patients with HPP.

15.
Cell Prolif ; 53(5): e12810, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32472648

RESUMO

OBJECTIVES: Gli1+ cells have received extensive attention in tissue homeostasis and injury mobilization. The aim of this study was to investigate whether Gli1+ cells respond to force and contribute to bone remodelling. MATERIALS AND METHODS: We established orthodontic tooth movement (OTM) model to assess the bone response for mechanical force. The transgenic mice were utilized to label and inhibit Gli1+ cells, respectively. Additionally, mice that conditional ablate Yes-associated protein (Yap) in Gli1+ cells were applied in the present study. The tooth movement and bone remodelling were analysed. RESULTS: We first found Gli1+ cells expressed in periodontal ligament (PDL). They were proliferated and differentiated into osteoblastic cells under tensile force. Next, both pharmacological and genetic Gli1 inhibition models were utilized to confirm that inhibition of Gli1+ cells led to arrest of bone remodelling. Furthermore, immunofluorescence staining identified classical mechanotransduction factor Yap expressed in Gli1+ cells and decreased after suppression of Gli1+ cells. Additionally, conditional ablation of Yap gene in Gli1+ cells inhibited the bone remodelling as well, suggesting Gli1+ cells are force-responsive cells. CONCLUSIONS: Our findings highlighted that Gli1+ cells in PDL directly respond to orthodontic force and further mediate bone remodelling, thus providing novel functional evidence in the mechanism of bone remodelling and first uncovering the mechanical responsive property of Gli1+ cells.


Assuntos
Remodelação Óssea/fisiologia , Osso e Ossos/metabolismo , Osso e Ossos/fisiologia , Proteína GLI1 em Dedos de Zinco/metabolismo , Animais , Diferenciação Celular/fisiologia , Mecanotransdução Celular/fisiologia , Camundongos , Camundongos Transgênicos , Osteoclastos/metabolismo , Osteoclastos/fisiologia , Ligamento Periodontal/metabolismo , Ligamento Periodontal/fisiologia , Estresse Mecânico , Técnicas de Movimentação Dentária/métodos
16.
Trends Mol Med ; 26(1): 89-104, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31126872

RESUMO

Mitochondria have emerged as key contributors to the organismal homeostasis, in which mitochondrial regulation of stem cells is becoming increasingly important. Originated from mesenchymal stem cell (MSC) and hematopoietic stem cell (HSC) lineage commitments and interactions, bone is a representative organ where the mitochondrial essentiality to stem cell function has most recently been discovered, underlying skeletal health, aging, and diseases. Furthermore, mitochondrial medications based on modulating stem cell specification are emerging to provide promising therapies to counteract bone aging and pathologies. Here we review the cutting-edge knowledge regarding mitochondrial regulation of stem cells in bone homeostasis, highlighting mechanistic insights as well as mitochondrial strategies for augmented bone healing and tissue regeneration.


Assuntos
Osso e Ossos/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Homeostase/fisiologia , Células-Tronco Mesenquimais/fisiologia , Mitocôndrias/fisiologia , Envelhecimento/fisiologia , Animais , Humanos
17.
Trends Cell Biol ; 30(2): 97-116, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31866188

RESUMO

Mesenchymal stem cells (MSCs) have putative roles in maintaining adult tissue health, and the functional decline of MSCs has emerged as a crucial pathophysiological driver of various diseases. Epigenetic regulation is essential for establishing and preserving MSC homeostasis in vivo. Furthermore, growing evidence suggests that epigenetic dysregulation contributes to age- and disease-associated MSC alterations. Epigenetic marks in MSCs can be amplified through self-renewal divisions and transmitted to differentiated progeny, further perpetuating their role in tissue maintenance and pathogenesis. We review the epigenetic regulation of MSC homeostasis, emphasizing its contributions to organismal health and disease. Understanding these epigenetic mechanisms could hold promise as targets for MSC-mediated regenerative therapies.


Assuntos
Epigênese Genética , Homeostase/genética , Células-Tronco Mesenquimais/metabolismo , Envelhecimento/genética , Metilação de DNA/genética , Doença/genética , Humanos
18.
Biomaterials ; 196: 18-30, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29122279

RESUMO

Restoration of extensive bone loss and defects remain as an unfulfilled challenge in modern medicine. Given the critical contributions to bone homeostasis and diseases, mesenchymal stem cells (MSCs) have shown great promise to jumpstart and facilitate bone healing, with immense regenerative potential in both pharmacology-based endogenous MSC rescue/mobilization in skeletal diseases and emerging application of MSC transplantation in bone tissue engineering and cytotherapy. However, efficacy of MSC-based bone regeneration was not always achieved; particularly, fulfillment of MSC-mediated bone healing in diseased microenvironments of host comorbidities remains as a major challenge. Indeed, impacts of diseased microenvironments on MSC function rely not only on the dynamic regulation of resident MSCs by surrounding niche to convoy pathological signals of bone, but also on the profound interplay between transplanted MSCs and recipient components that mediates and modulates therapeutic effects on skeletal conditions. Accordingly, novel solutions have recently been developed, including improving resistance of MSCs to diseased microenvironments, recreating beneficial microenvironments to guarantee MSC-based regeneration, and usage of subcellular vesicles of MSCs in cell-free therapies. In this review, we summarize state-of-the-art knowledge regarding applications and challenges of MSC-mediated bone healing, further offering principles and effective strategies to optimize MSC-based bone regeneration in aging and diseases.


Assuntos
Doenças Ósseas/patologia , Doenças Ósseas/terapia , Regeneração Óssea , Microambiente Celular , Células-Tronco Mesenquimais/citologia , Animais , Humanos , Transplante de Células-Tronco Mesenquimais , Engenharia Tecidual
19.
Methods Mol Biol ; 2002: 87-99, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30187400

RESUMO

The niche plays critical roles in regulating functionality and determining regenerative outcomes of stem cells, for which establishment of favorable microenvironments is in demand in translational medicine. In recent years, the cell aggregate technology has shown immense potential to reconstruct a beneficial topical niche for stem cell-mediated regeneration, which has been recognized as a promising concept for high-density stem cell delivery with preservation of the self-produced, tissue-specific extracellular matrix microenvironments. Here, we describe the basic methodology of stem cell aggregate-based niche engineering and quality check indexes prior to application.


Assuntos
Engenharia Celular/métodos , Matriz Extracelular/fisiologia , Regeneração , Nicho de Células-Tronco/fisiologia , Células-Tronco/citologia , Células-Tronco/fisiologia , Animais , Agregação Celular , Humanos , Camundongos Endogâmicos C57BL
20.
Theranostics ; 8(20): 5575-5592, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555565

RESUMO

Lineage differentiation of bone marrow mesenchymal stem cells (BMMSCs) is the key to bone-fat reciprocity in bone marrow. To date, the regulators of BMMSC lineage switching have all been identified to be transcription factors, and researchers have not determined whether other genes control this process. This study aims to reveal a previously unknown role of tissue-nonspecific alkaline phosphatase (TNSALP) in controlling BMMSC lineage selection. Methods: We compared the characteristics of cultured BMMSCs from patients with hypophosphatasia (HPP), which is caused by mutations in the liver/bone/kidney alkaline phosphatase (ALPL) gene, and an ALPL knockout (ko) mouse model. We performed ALPL downregulation and overexpression experiments to investigate the regulatory role of ALPL in BMMSC lineage switching. Using the PathScan array, coimmunoprecipitation experiments and pathway-guided small molecule treatments, we explored the possible mechanism underlying the regulatory effects of ALPL on cell differentiation and evaluated its therapeutic effect on ALPL ko mice. Results: BMMSCs from both patients with HPP and ALPL ko mice exhibited defective lineage differentiation, including a decrease in osteogenic differentiation and a parallel increase in adipogenic differentiation. Mechanistically, TNSALP directly interacted with LRP6 and regulated the phosphorylation of GSK3ß, subsequently resulting in lineage switching of BMMSCs. Re-phosphorylation of GSK3ß induced by LiCl treatment restored differentiation of BMMSCs and attenuated skeletal deformities in Alpl+/- mice. Conclusion: Based on our findings, TNSALP acts as a signal regulator to control lineage switching of BMMSCs by regulating the LRP6/GSK3ß cascade.


Assuntos
Fosfatase Alcalina/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipofosfatasia/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Adolescente , Fosfatase Alcalina/genética , Animais , Criança , Modelos Animais de Doenças , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Hipofosfatasia/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Masculino , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...