Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Transl Cancer Res ; 13(4): 1695-1706, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38737699

RESUMO

Background: Cisplatin (CP) is commonly used for the initial treatment of lung adenocarcinoma (LUAD). Resistance to CP has long been recognized as a significant obstacle to achieving improved therapeutic outcomes. Nevertheless, the intricate molecular mechanisms underlying the phenomenon remain incompletely understood. Methods: The present study utilized the University of ALabama at Birmingham CANcer data analysis Portal (UALCAN) and Gene Expression Profiling Interactive Analysis (GEPIA) databases to conduct an analysis of the expression of C-terminal binding protein 2 (CTBP2) in LUAD. The correlation between CTBP2 expression and survival data was investigated by the Kaplan-Meier (K-M) plotter. Subsequently, the roles of CTBP2 in CP resistance were explored by analyzing cell viability, cell apoptosis, reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) in CP-resistant cells (A549/DDP). Results: Our data indicated that the CTBP2 expression in LUAD exhibited a significant increase compared to the non-malignant tissues. CTBP2 overexpression showed a correlation to poor survival. CTBP2 knockdown significantly enhanced cell sensitivity to CP in A549/DDP cells. The underlying mechanism is related to promoting ROS production and decreasing MMP after CP treatment. Conclusions: CTBP2 expression has been identified as a novel biomarker for resistance to CP, and its downregulation has been found to enhance sensitivity to CP. Therefore, CTBP2 can serve as a predictor related to CP resistance and a viable therapeutic target for CP resistance in LUAD.

2.
J Radiat Res ; 65(3): 279-290, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38682896

RESUMO

Combined radiation-trauma skin injury represents a severe and intractable condition that urgently requires effective therapeutic interventions. In this context, hepatocyte growth factor (HGF), a multifunctional growth factor with regulating cell survival, angiogenesis, anti-inflammation and antioxidation, may be valuable for the treatment of combined radiation-trauma injury. This study investigated the protective effects of a recombinant plasmid encoding human HGF (pHGF) on irradiated human immortalized keratinocytes (HaCaT) cells in vitro, and its capability to promote the healing of combined radiation-trauma injuries in mice. The pHGF radioprotection on irradiated HaCaT cells in vitro was assessed by cell viability, the expression of Nrf2, Bcl-2 and Bax, as well as the secretion of inflammatory cytokines. In vivo therapeutic treatment, the irradiated mice with full-thickness skin wounds received pHGF local injection. The injuries were appraised based on relative wound area, pathology, immunohistochemical detection, terminal deoxynucleotidyl transferase dUTP nick end labelling assay and cytokine content. The transfection of pHGF increased the cell viability and Nrf2 expression in irradiated HaCaT cells. pHGF also significantly upregulated Bcl-2 expression, decreased the Bax/Bcl-2 ratio and inhibited the expression of interleukin-1ß and tumor necrosis factor-α in irradiated cells. Local pHGF injection in vivo caused high HGF protein expression and noticeable accelerated healing of combined radiation-trauma injury. Moreover, pHGF administration upregulated Nrf2, vascular endothelial growth factor, Bcl-2 expression, downregulated Bax expression and mitigated inflammatory response. In conclusion, the protective effect of pHGF may be related to inhibiting apoptosis and inflammation involving by upregulating Nrf2. Local pHGF injection distinctly promoted the healing of combined radiation-trauma injury and demonstrates potential as a gene therapy intervention for combined radiation-trauma injury in clinic.


Assuntos
Fator de Crescimento de Hepatócito , Fator 2 Relacionado a NF-E2 , Plasmídeos , Transdução de Sinais , Pele , Cicatrização , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Humanos , Fator de Crescimento de Hepatócito/genética , Cicatrização/efeitos dos fármacos , Pele/patologia , Pele/efeitos da radiação , Camundongos , Lesões por Radiação , Apoptose , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Citocinas/metabolismo , Células HaCaT , Masculino , Queratinócitos/efeitos da radiação
3.
Glob Chang Biol ; 30(2): e17181, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38372171

RESUMO

Nitrous oxide (N2 O) is a potent greenhouse gas and causes stratospheric ozone depletion. While the emissions of N2 O from soil are widely recognized, recent research has shown that terrestrial plants may also emit N2 O from their leaves under controlled laboratory conditions. However, it is unclear whether foliar N2 O emissions are universal across varying plant taxa, what the global significance of foliar N2 O emissions is, and how the foliage produces N2 O in situ. Here we investigated the abilities of 25 common plant taxa, including trees, shrubs and herbs, to emit N2 O under in situ conditions. Using 15 N isotopic labeling, we demonstrated that the foliage-emitted N2 O was predominantly derived from nitrate. Moreover, by selectively injecting biocide in conjunction with the isolating and back-inoculating of endophytes, we demonstrated that the foliar N2 O emissions were driven by endophytic bacteria. The seasonal N2 O emission rates ranged from 3.2 to 9.2 ng N2 O-N g-1 dried foliage h-1 . Extrapolating these emission rates to global foliar biomass and plant N uptake, we estimated global foliar N2 O emission to be 1.21 and 1.01 Tg N2 O-N year-1 , respectively. These estimates account for 6%-7% of the current global annual N2 O emission of 17 Tg N2 O-N year-1 , indicating that in situ foliar N2 O emission is a universal process for terrestrial plants and contributes significantly to the global N2 O inventory. This finding highlights the importance of measuring foliar N2 O emissions in future studies to enable the accurate assigning of mechanisms and the development of effective mitigation.


Assuntos
Gases de Efeito Estufa , Plantas , Solo , Atmosfera , Biomassa , Óxido Nitroso/análise
4.
Environ Sci Technol ; 58(5): 2323-2334, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38267389

RESUMO

The heavy use of nitrogen fertilizer in intensive agricultural areas often leads to nitrate accumulation in subsurface soil and nitrate contamination in groundwater, which poses a serious risk to public health. Denitrifying microorganisms in the subsoil convert nitrate to gaseous forms of nitrogen, thereby mitigating the leaching of nitrate into groundwater. Here, we investigated denitrifying microorganisms in the deep vadose zone of a typical intensive agricultural area in China through microcosm enrichment, genome-resolved metagenomic analysis, and denitrifying bacteria isolation. A total of 1000 metagenome-assembled genomes (MAGs) were reconstructed, resulting in 98 high-quality, dereplicated MAGs that contained denitrification genes. Among them, 32 MAGs could not be taxonomically classified at the genus or species level, indicating that a broader spectrum of taxonomic groups is involved in subsoil denitrification than previously recognized. A denitrifier isolate library was constructed by using a strategy combining high-throughput and conventional cultivation techniques. Assessment of the denitrification characteristics of both the MAGs and isolates demonstrated the dominance of truncated denitrification. Functional screening revealed the highest denitrification activity in two complete denitrifiers belonging to the genus Pseudomonas. These findings greatly expand the current knowledge of the composition and function of denitrifying microorganisms in subsoils. The constructed isolate library provided the first pool of subsoil-denitrifying microorganisms that could facilitate the development of microbe-based technologies for nitrate attenuation in groundwater.


Assuntos
Desnitrificação , Nitratos , Nitratos/análise , Bactérias/genética , Metagenoma , Nitrogênio , Metagenômica
5.
Sci Total Environ ; 916: 170114, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38232832

RESUMO

Excessive use of fertilizers presents a significant threat to groundwater safety. To mitigate nitrate leaching and ensure the sustainable utilization of groundwater resources, it is crucial to quantify the spatial heterogeneity of nitrogen leaching and its drivers. Therefore, accurate modeling of deep nitrate leaching at large regional scales is necessary. In this study, we have created a computational framework to analyze the transport of unsaturated zone water and nitrate at a regional scale. The framework is based on a process-oriented, watershed-scale computational model that segments the study area into a grid system, with each grid modeled using Richards-based advection-diffusion equations for water and solutes. The research model estimated nitrate nitrogen leaching, accumulation, and denitrification in the vadose zone of agricultural fields in the Baiyangdian watershed, which is a typical agricultural region with complex land use and soil deposition conditions in the North China Plain. The results showed that there were significant spatial differences in nitrate N leaching, denitrification and accumulation with values of 0-388 kg/ha/year, 30-177 kg/ha/year and 75-4778 kg/ha. Groundwater recharge in the wheat/maize, vegetable, and cotton area exhibited a negative correlation with nitrate N accumulation while showing a positive correlation with nitrate N leaching. Nitrate nitrogen distribution indicated spatial heterogeneity, attributable mainly to the heterogeneity in soil texture, structure, and land use. With nitrate nitrogen leaching and denitrification levels reaching 327-388 kg/ha/year and 133-175 kg/ha/year, respectively, vegetable fields pose a direct threat to groundwater. Meanwhile, wheat/maize fields showed the greatest nitrate nitrogen accumulation, ranging from 624 to 4778 kg/ha. This excessive buildup of nitrate in these fields presents a potential hazard to groundwater quality. Soil texture in the root zone had a greater influence on the amount of nitrate leaching and denitrification than soil texture below the root zone. Deeper soil texture (>2 m) was found to mainly control total nitrate accumulation in the vadose zone. To assess nitrate leaching, denitrification, and accumulation at a regional scale within the deep vadose zone, a process-oriented model was developed, considering the intricate associations among land usage, soil texture, and biochemical reactions.

6.
PeerJ ; 11: e15428, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334112

RESUMO

Climate change may lead to adverse effects on agricultural crops, plant microbiomes have the potential to help hosts counteract these effects. While plant-microbe interactions are known to be sensitive to temperature, how warming affects the community composition and functioning of plant microbiomes in most agricultural crops is still unclear. Here, we utilized a 10-year field experiment to investigate the effects of warming on root zone carbon availability, microbial activity and community composition at spatial (root, rhizosphere and bulk soil) and temporal (tillering, jointing and ripening stages of plants) scales in field-grown wheat (Triticum aestivum L.). The dissolved organic carbon and microbial activity in the rhizosphere were increased by soil warming and varied considerably across wheat growth stages. Warming exerted stronger effects on the microbial community composition in the root and rhizosphere samples than in the bulk soil. Microbial community composition, particularly the phyla Actinobacteria and Firmicutes, shifted considerably in response to warming. Interestingly, the abundance of a number of known copiotrophic taxa, such as Pseudomonas and Bacillus, and genera in Actinomycetales increased in the roots and rhizosphere under warming and the increase in these taxa implies that they may play a role in increasing the resilience of plants to warming. Taken together, we demonstrated that soil warming along with root proximity and plant growth status drives changes in the microbial community composition and function in the wheat root zone.


Assuntos
Microbiota , Triticum , Microbiologia do Solo , Solo , Bactérias , Produtos Agrícolas/microbiologia
7.
Clin Chim Acta ; 547: 117415, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37271272

RESUMO

BACKGROUND: Great concerns have been raised on SARS-CoV-2 impact on men's andrological well-being, and many studies have attempted to determine whether SARS-CoV-2 is present in the semen and till now the data are unclear and somehow ambiguous. However, these studies used quantitative real-time (qRT) PCR, which is not sufficiently sensitive to detect nucleic acids in clinical samples with a low viral load. METHODS: The clinical performance of various nucleic acid detection methods (qRT-PCR, OSN-qRT-PCR, cd-PCR, and CBPH) was assessed for SARS-CoV-2 using 236 clinical samples from laboratory-confirmed COVID-19 cases. Then, the presence of SARS-CoV-2 in the semen of 12 recovering patients was investigated using qRT-PCR, OSN-qRT-PCR, cd-PCR, and CBPH in parallel using 24 paired semen, blood, throat swab, and urine samples. RESULTS: The sensitivity and specificity along with AUC of CBPH was markedly higher than the other 3methods. Although qRT-PCR, OSN-qRT-PCR and cdPCR detected no SARS-CoV-2 RNA in throat swab, blood, urine, and semen samples of the 12 patients, CBPH detected the presence of SARS-CoV-2 genome fragments in semen samples, but not in paired urine samples, of 3 of 12 patients. The existing SARS-CoV-2 genome fragments were metabolized over time. CONCLUSIONS: Both OSN-qRT-PCR and cdPCR had better performance than qRT-PCR, and CBPH had the highest diagnostic performance in detecting SARS-CoV-2, which contributed the most improvement to the determination of the critical value in gray area samples with low vrial load, which then provides a rational screening strategy for studying the clearance of coronavirus in the semen over time in patients recovering from COVID-19. Although the presence of SARS-CoV-2 fragments in the semen was demonstrated by CBPH, COVID-19 is unlikely to be sexually transmitted from male partners for at least 3 months after hospital discharge.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Masculino , SARS-CoV-2/genética , COVID-19/diagnóstico , Sêmen/química , Teste para COVID-19 , Reação em Cadeia da Polimerase em Tempo Real/métodos , RNA Viral/genética
8.
Int J Mol Sci ; 24(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37047634

RESUMO

Compound 6d, a spiroindoline compound, exhibits antiproliferative capability against cancer cell lines. However, the exact underlying mechanism of this compound-mediated inhibitory capability remains unclear. Here, we showed that compound 6d is an inhibitor of Bcl-2, which suppresses CRC growth by inducing caspase 3-mediated intrinsic apoptosis of mitochondria. Regarding the underlying mechanism, we identified HDAC6 as a direct substrate for caspase 3, and caspase 3 activation induced by compound 6d directly cleaves HDAC6 into two fragments. Moreover, the cleavage site was located at D1088 in the DMAD-S motif HDAC6. Apoptosis stimulated by compound 6d promoted autophagy initiation by inhibiting interaction between Bcl-2 and Beclin 1, while it led to the accumulation of ubiquitinated proteins and the reduction of autophagic flux. Collectively, our findings reveal that the Bcl-2-caspase 3-HDAC6 cascade is a crucial regulatory pathway of autophagy and identify compound 6d as a novel lead compound for disrupting the balance between apoptosis and autophagy.


Assuntos
Proteínas Reguladoras de Apoptose , Neoplasias Colorretais , Humanos , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/fisiologia , Proteína Beclina-1/genética , Caspase 3/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Desacetilase 6 de Histona , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
9.
Eur J Med Chem ; 250: 115235, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36863226

RESUMO

The efficacy and resistance of cisplatin-based compounds are very intractable problems at present. This study reports a series of platinum(IV) compounds containing multiple-bond ligands, which exhibited better tumor cell inhibitory activity and antiproliferative and anti-metastasis activities than cisplatin. The meta-substituted compounds 2 and 5 were particularly excellent. Further research showed that compounds 2 and 5 possessed appropriate reduction potential and performed significantly better than cisplatin in cellular uptake, reactive oxygen species response, the up-regulation of apoptosis and DNA lesion-related genes, and drug-resistant cell activity. The title compounds exhibited better antitumor potential and fewer side effects than cisplatin in vivo. Multiple-bond ligands were introduced into cisplatin to form the title compounds in this study, which not only enhanced their absorption and overcame drug resistance but also demonstrated the potential to target mitochondria and inhibit the detoxification of tumor cells.


Assuntos
Antineoplásicos , Cisplatino , Cisplatino/farmacologia , Platina/farmacologia , Platina/química , Antineoplásicos/química , Resistencia a Medicamentos Antineoplásicos , Compostos Organoplatínicos/química , Mitocôndrias , Linhagem Celular Tumoral
10.
Microorganisms ; 11(3)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36985167

RESUMO

Nitrous oxide (N2O) pulse emissions are detected in soils subjected to freeze-thaw cycles in both laboratory and field experiments. However, the mechanisms underlying this phenomenon are poorly understood. In this study, a laboratory incubation experiment that included freeze-thaw cycles (FTC), freezing (F) and control (CK) treatments was performed on three typical Chinese upland soils, namely, fluvo-aquic soil (FS), black soil (BS) and loess soil (LS). A higher similarity in soil properties and bacterial community structure was discovered between FS and LS than between FS and BS or LS and BS, and the bacterial diversity of FS and LS was higher than that of BS. FTC significantly increased the denitrification potential and the proportion of N2O in the denitrification gas products in FS and LS but decreased the denitrification potential in BS. Accordingly, with the increasing number of freeze-thaw cycles, the bacterial community composition in the FTC treatments in FS and LS diverged from that in CK but changed little in BS. Taxa that responded to FTC or correlated with denitrification potential were identified. Taken together, our results demonstrated that the effects of FTC on N2O emissions are soil-type-dependent and that the shift in the microbial community structure may contribute to the elevated N2O emissions.

11.
Molecules ; 28(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36838936

RESUMO

In this study, 2-benzyl-10a-(1H-pyrrol-2-yl)-2,3-dihydropyrazino[1,2-a]indole-1,4,10(10aH)-trione (DHPITO), a previously identified inhibitor against hepatocellular carcinoma cells, is shown to exert its cytotoxic effects by suppressing the proliferation and growth of CRC cells. An investigation of its molecular mechanism confirmed that the cytotoxic activity of DHPITO is mediated through the targeting of microtubules with the promotion of subsequent microtubule polymerisation. With its microtubule-stabilising ability, DHPITO also consistently arrested the cell cycle of the CRC cells at the G2/M phase by promoting the phosphorylation of histone 3 and the accumulation of EB1 at the cell equator, reduced the levels of CRC cell migration and invasion, and induced cellular apoptosis. Furthermore, the compound could suppress both tumour size and tumour weight in a CRC xenograft model without any obvious side effects. Taken together, the findings of the present study reveal the antiproliferative and antitumour mechanisms through which DHPITO exerts its activity, indicating its potential as a putative chemotherapeutic agent and lead compound with a novel structure.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Humanos , Linhagem Celular Tumoral , Tubulina (Proteína)/metabolismo , Pontos de Checagem do Ciclo Celular , Apoptose , Moduladores de Tubulina/farmacologia , Microtúbulos , Antineoplásicos/farmacologia , Neoplasias Colorretais/metabolismo , Proliferação de Células
12.
Front Microbiol ; 14: 1120466, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846789

RESUMO

Numerous studies have investigated the effects of nitrogen (N) addition on soil organic carbon (SOC) decomposition. However, most studies have focused on the shallow top soils <0.2 m (surface soil), with a few studies also examining the deeper soil depths of 0.5-1.0 m (subsoil). Studies investigating the effects of N addition on SOC decomposition in soil >1.0 m deep (deep soil) are rare. Here, we investigated the effects and the underlying mechanisms of nitrate addition on SOC stability in soil depths deeper than 1.0 m. The results showed that nitrate addition promoted deep soil respiration if the stoichiometric mole ratio of nitrate to O2 exceeded the threshold of 6:1, at which nitrate can be used as an alternative acceptor to O2 for microbial respiration. In addition, the mole ratio of the produced CO2 to N2O was 2.57:1, which is close to the theoretical ratio of 2:1 expected when nitrate is used as an electron acceptor for microbial respiration. These results demonstrated that nitrate, as an alternative acceptor to O2, promoted microbial carbon decomposition in deep soil. Furthermore, our results showed that nitrate addition increased the abundance of SOC decomposers and the expressions of their functional genes, and concurrently decreased MAOC, and the ratio of MAOC/SOC decreased from 20% before incubation to 4% at the end of incubation. Thus, nitrate can destabilize the MAOC in deep soils by stimulating microbial utilization of MAOC. Our results imply a new mechanism on how above-ground anthropogenic N inputs affect MAOC stability in deep soil. Mitigation of nitrate leaching is expected to benefit the conservation of MAOC in deep soil depths.

13.
Commun Med (Lond) ; 3(1): 19, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750687

RESUMO

BACKGROUND: The prognostic role of the cardiothoracic ratio (CTR) in chronic kidney disease (CKD) remains undetermined. METHODS: We conducted a retrospective cohort study of 3117 patients with CKD aged 18-89 years who participated in an Advanced CKD Care Program in Taiwan between 2003 and 2017 with a median follow up of 1.3(0.7-2.5) and 3.3(1.8-5.3) (IQR) years for outcome of end-stage renal disease (ESRD) and overall death, respectively. We developed a machine learning (ML)-based algorithm to calculate the baseline and serial CTRs, which were then used to classify patients into trajectory groups based on latent class mixed modelling. Association and discrimination were evaluated using multivariable Cox proportional hazards regression analyses and C-statistics, respectively. RESULTS: The median (interquartile range) age of 3117 patients is 69.5 (59.2-77.4) years. We create 3 CTR trajectory groups (low [30.1%], medium [48.1%], and high [21.8%]) for the 2474 patients with at least 2 CTR measurements. The adjusted hazard ratios for ESRD, cardiovascular mortality, and all-cause mortality in patients with baseline CTRs ≥0.57 (vs CTRs <0.47) are 1.35 (95% confidence interval, 1.06-1.72), 2.89 (1.78-4.71), and 1.50 (1.22-1.83), respectively. Similarly, greater effect sizes, particularly for cardiovascular mortality, are observed for high (vs low) CTR trajectories. Compared with a reference model, one with CTR as a continuous variable yields significantly higher C-statistics of 0.719 (vs 0.698, P = 0.04) for cardiovascular mortality and 0.697 (vs 0.693, P < 0.001) for all-cause mortality. CONCLUSIONS: Our findings support the real-world prognostic value of the CTR, as calculated by a ML annotation tool, in CKD. Our research presents a methodological foundation for using machine learning to improve cardioprotection among patients with CKD.


An enlarged heart occurs during various medical conditions and can result in early death. However, it is unclear whether this is also the case in patients with chronic kidney disease (CKD). Although the size of the heart can be measured on chest X-rays, this process is time consuming. We used artificial intelligence to quantify the heart size of 3117 CKD patients based on their chest X-rays within hours. We found that CKD patients with an enlarged heart were more likely to develop end-stage kidney disease or die. This could improve monitoring of CKD patients with an enlarged heart and improve their care.

14.
Sci Adv ; 9(6): eadd0041, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36753554

RESUMO

Even a small net increase in soil organic carbon (SOC) mineralization will cause a substantial increase in the atmospheric CO2 concentration. It is widely recognized that the SOC mineralization within deep critical zones (2 to 12 m depth) is slower and much less influenced by anthropogenic disturbance when compared to that of surface soil. Here, we showed that 20 years of nitrogen (N) fertilization enriched a deep critical zone with nitrate, almost doubling the SOC mineralization rate. This result was supported by corresponding increases in the expressions of functional genes typical of recalcitrant SOC degradation and enzyme activities. The CO2 released and the SOC had a similar 14C age (6000 to 10,000 years before the present). Our results indicate that N fertilization of crops may enhance CO2 emissions from deep critical zones to the atmosphere through a previously disregarded mechanism. This provides another reason for markedly improving N management in fertilized agricultural soils.

15.
Technol Health Care ; 31(2): 579-592, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36336945

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD) is one of the most common cancers with high morbidity and mortality and remains a crucial factor endangering human health. OBJECTIVE: This study aimed to elucidate the potential treatment target and prognostic biomarker in patients with LUAD through a comprehensive bioinformatics analysis. METHODS: The three public microarray datasets of GSE118370, GSE116959, and GSE43767 were obtained from the GEO data resource. The DEGs were explored between LUAD and non-malignant samples using GEO2R online tool in GEO data resource. GO along with KEGG analysis of DEGs were examined using WebGestalt tool. The STRING web resource was employed to develop the PPI network of DEGs, whereas Cytoscape software was employed to perform module analysis. Finally, the mRNA, protein expression along with survival analysis of hub genes were explored via GEPIA, HPA along with Kaplan-Meier plotter web resource, respectively. RESULTS: Only 82 upregulated and 105 downregulated DEGs were found among the three datasets. Further, GO analysis illustrated that 187 DEGs were primary enriched in extracellular structure organization, tube development along with cell adhesion. The KEGG enrichments showed that these DEGs were primary linked to leukocyte transendothelial migration, vascular smooth muscle contraction along with ECM-receptor interaction. Among the 187 DEGs, the 10 hub genes (P4HB, SPP1, CP, GOLM1, COL1A1, MMP9, COL10A1, APOA1, COL4A6, and TIMP1) were identified. The mRNA along with protein levels of hub genes in LUAD tissues were further verified by Oncomine, UCSC Xena, GEPIA and HPA databases. Additionally, overall survival curves illustrated that LUAD patients with the higher levels of P4HB, SPP1, COL1A1, and MMP9 were dramatically linked to shorter overall survival. CONCLUSIONS: The current study identified DEGs candidate genes (P4HB, SPP1, COL1A1, and MMP9) and pathways in LUAD using bioinformatics analysis, which could enhance our understanding of pathogenesis along with underlying molecular events in LUAD, and these hub genes and pathways may help provide candidate treatment targets for LUAD.


Assuntos
Adenocarcinoma , Neoplasias Pulmonares , Adenocarcinoma/genética , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Adenocarcinoma/terapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Humanos , Análise de Sobrevida , Perfilação da Expressão Gênica , Mapas de Interação de Proteínas , Conjuntos de Dados como Assunto , Biologia Computacional
16.
Journal of Preventive Medicine ; (12): 970-974, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1013268

RESUMO

Objective @#To investigate the trends in incidence of malignant tumors in Yongkang City, Zhejiang Province from 2013 to 2019, so as to provide insights into formulation of the malignant tumor control strategy.@*Methods@#Data pertaining to the incidence of malignant tumors from 2013 to 2019 were captured from the Zhejiang Chronic Disease Monitoring Information System. Based on the International Classification of Diseases 10th Revision (ICD-10) and data from the national population census, the constituent ratio, crude incidence and Chinese population-standardized incidence of malignant tumors were estimated, and the trends in incidence of malignant tumors were investigated using annual percent change (APC).@*Results@#The annual mean crude incidence and Chinese population-standardized incidence of malignant tumors were 356.75/105 and 226.97/105, which both appeared an overall tendency towards a rise (APC=5.887% and 4.815%, both P<0.05). The crude incidence of malignant tumors appeared a tendency towards a rise among both men (APC=3.860%, P<0.05) and women (APC=8.534%, P<0.05) from 2013 to 2019, and the Chinese population-standardized incidence of malignant tumors appeared a tendency towards a rise among women (APC=8.392%, P<0.05). The largest increase in the crude incidence of malignant tumors was seen among women at ages of 15 to 44 years (APC=11.599%, P<0.05). In addition, the Chinese population-standardized incidence of lung cancer, colorectal cancer and thyroid cancer all showed a tendency towards a rise among men (all P<0.05), and the Chinese population-standardized incidence of lung cancer and thyroid cancer both appeared a tendency towards a rise among women (both P<0.05). @*Conclusions@#The incidence of malignant tumors showed a tendency towards a rise in Yongkang City from 2013 to 2019, and the elderly and young females are high-risk populations for malignant tumors. Lung cancer, thyroid cancer and colorectal cancer are cancers that should be given a high priority.

17.
Molecules ; 27(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36557977

RESUMO

Colorectal cancer (CRC) is one of the most common causes of cancer-related death worldwide, and more therapies are needed to treat CRC. To discover novel CRC chemotherapeutic molecules, we used a series of previously synthesized novel imidazolidin-4-one derivatives to study their anticancer role in several cancer cell lines. Among these compounds, compound 9r exhibited the best anticancer activity in CRC cell lines HCT116 and SW620. We further investigated the anticancer molecular mechanism of compound 9r. We found that compound 9r induced mitochondrial pathway apoptosis in HCT116 and SW620 cells by inducing reactive oxygen species (ROS) production. Moreover, the elevated ROS generation activated the c-Jun N-terminal kinase (JNK) pathway, which further accelerated apoptosis. N-acetylcysteine (NAC), an antioxidant reagent, suppressed compound 9r-induced ROS production, JNK pathway activation, and apoptosis. Collectively, this research synthesized a series of imidazolidin-4-one derivatives, evaluated their anticancer activity, and explored the molecular mechanism of compound 9r-induced apoptosis in CRC cells. The present results suggest that compound 9r has a potential therapeutic role in CRC. Hence, it deserves further exploration as a lead compound for CRC treatment.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Humanos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo
18.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362025

RESUMO

For patients exhibiting non-small-cell lung cancer (NSCLC) with activating epidermal growth factor receptor (EGFR) mutations, epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are a first-line treatment. However, most patients who initially responded to EGFR-TKIs eventually developed acquired resistance, limiting the effectiveness of therapy. It has long been known that epithelial-mesenchymal transition (EMT) leads to acquired resistance to EGFR-TKIs in NSCLC. However, the mechanisms underlying the resistance dependent on EMT are unknown. This research aimed to reveal the effects of LMNA in the regulation of acquired resistance to erlotinib by EMT in NSCLC. The acquired erlotinib-resistant cells (HCC827/ER) were induced by gradual increase of concentrations of erlotinib in erlotinib-sensitive HCC827 cells. RNA sequencing and bioinformatics analysis were performed to uncover the involvement of LMNA in the EMT process that induced acquired resistance to erlotinib. The effect of LMNA on cell proliferation and migration was measured by clone-formation, wound-healing, and transwell assays, respectively. The EMT-related protein, nuclear shape and volume, and cytoskeleton changes were examined by immunofluorescence. Western blot was used to identify the underlying molecular mechanism of LMNA regulation of EMT. HCC827/ER cells with acquired resistance to erlotinib underwent EMT and exhibited lower LMNA expression compared to parental sensitive cells. LMNA negatively regulated the expression of EMT markers; HCC827/ER cells showed a significant up-regulation of mesenchymal markers, such as CDH2, SNAI2, VIM, ZEB1, and TWIST1. The overexpression of LMNA in HCC827/ER cells significantly inhibited EMT and cell proliferation, and this inhibitory effect of LMNA was enhanced in the presence of 2.5 µM erlotinib. Furthermore, a decrease in LMNA expression resulted in a higher nuclear deformability and cytoskeletal changes. In HCC827/ER cells, AKT, FGFR, ERK1/2, and c-fos phosphorylation levels were higher than those in HCC827 cells; Furthermore, overexpression of LMNA in HCC827/ER cells reduced the phosphorylation of AKT, ERK1/2, c-fos, and FGFR. In conclusion, our findings first demonstrated that downregulation of LMNA promotes acquired EGFR-TKI resistance in NSCLC with EGFR mutations by EMT. LMNA inhibits cell proliferation and migration of erlotinib-resistant cells via inhibition of the FGFR/MAPK/c-fos signaling pathway. These findings indicated LMNA as a driver of acquired resistance to erlotinib and provided important information about the development of resistance to erlotinib treatment in NSCLC patients with EGFR mutations.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Transição Epitelial-Mesenquimal , Cloridrato de Erlotinib , Lamina Tipo A , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/farmacologia , Lamina Tipo A/efeitos dos fármacos , Lamina Tipo A/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
19.
PLoS One ; 17(10): e0276891, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36315495

RESUMO

High nitrogen (N) input to soil can cause higher nitrous oxide (N2O) emissions, that is, a higher N2O/(N2O+N2) ratio, through an inhibition of N2O reductase activity and/or a decrease in soil pH. We assumed that there were two mechanisms for the effects of N input on N2O emissions, immediate and long-term effect. The immediate effect (field applied fertilizer N) can be eliminated by decreasing the N input, but not the long-term effect (soil accumulated N caused by long-term fertilization). Therefore, it is important to separate these effects to mitigate N2O emissions. To this end, soil samples along a 0‒5.2 m profile were collected from a long-term N fertilization experiment field with two N application rates, that is, 600 kg N ha-1 year-1 (N600) and no fertilizer N input (N0). External N addition was conducted for each subsample in the laboratory incubation study to produce two additional treatments, which were denoted as N600+N and N0+N treatments. The results showed that the combined immediate and long-term effects led to an increase in the N2O/(N2O+N2) ratio by 6.8%. Approximately 32.6% and 67.4% of increase could be explained by the immediate and long-term effects of N input, respectively. Meanwhile, the long-term effects were significantly positively correlated to soil organic carbon (SOC). These results indicate that excessive N fertilizer input to the soil can lead to increased N2O emissions if the soil has a high SOC content. The long-term effect of N input on the N2O/(N2O+N2) ratio should be considered when predicting soil N2O emissions under global environmental change scenarios.


Assuntos
Óxido Nitroso , Solo , Óxido Nitroso/análise , Nitrogênio/análise , Desnitrificação , Carbono , Agricultura , Fertilizantes/análise , China
20.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232819

RESUMO

Oxygen (O2) is the most crucial substrate for numerous biochemical processes in plants. Its deprivation is a critical factor that affects plant growth and may lead to death if it lasts for a long time. However, various biotic and abiotic factors cause O2 deprivation, leading to hypoxia and anoxia in plant tissues. To survive under hypoxia and/or anoxia, plants deploy various mechanisms such as fermentation paths, reactive oxygen species (ROS), reactive nitrogen species (RNS), antioxidant enzymes, aerenchyma, and adventitious root formation, while nitrate (NO3-), nitrite (NO2-), and nitric oxide (NO) have shown numerous beneficial roles through modulating these mechanisms. Therefore, in this review, we highlight the role of reductive pathways of NO formation which lessen the deleterious effects of oxidative damages and increase the adaptation capacity of plants during hypoxia and anoxia. Meanwhile, the overproduction of NO through reductive pathways during hypoxia and anoxia leads to cellular dysfunction and cell death. Thus, its scavenging or inhibition is equally important for plant survival. As plants are also reported to produce a potent greenhouse gas nitrous oxide (N2O) when supplied with NO3- and NO2-, resembling bacterial denitrification, its role during hypoxia and anoxia tolerance is discussed here. We point out that NO reduction to N2O along with the phytoglobin-NO cycle could be the most important NO-scavenging mechanism that would reduce nitro-oxidative stress, thus enhancing plants' survival during O2-limited conditions. Hence, understanding the molecular mechanisms involved in reducing NO toxicity would not only provide insight into its role in plant physiology, but also address the uncertainties seen in the global N2O budget.


Assuntos
Gases de Efeito Estufa , Nitritos , Antioxidantes/metabolismo , Hipóxia , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Dióxido de Nitrogênio , Óxido Nitroso/metabolismo , Oxigênio/metabolismo , Plantas/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...