Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Ophthalmol ; 16(12): 1935-1941, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111943

RESUMO

AIM: To investigate the role of reactive oxygen species (ROS) in epithelial-mesenchymal transition (EMT) and apoptosis of human lens epithelial cells (HLECs). METHODS: Flow cytometry was used to assess ROS production after transforming growth factor ß2 (TGF-ß2) induction. Apoptosis of HLECs after H2O2 and TGF-ß2 interference with or without ROS scavenger N-acetylcysteine (NAC) were assessed by flow cytometry. The corresponding protein expression levels of the EMT marker α-smooth muscle actin (α-SMA), the extracellular matrix (ECM), marker fibronectin (Fn), and apoptosis-associated proteins were detected by using Western blotting in the presence of an ROS scavenger (NAC). Wound-healing and Transwell assays were used to assess the migration capability of HLECs. RESULTS: TGF-ß2 stimulates ROS production within 8h in HLECs. Additionally, TGF-ß2 induced HLECs cell apoptosis, EMT/ECM synthesis protein markers expression, and pro-apoptotic proteins production; nonetheless, NAC treatment prevented these responses. Similarly, TGF-ß2 promoted HLECs cell migration, whereas NAC inhibited cell migration. We further determined that although ROS initiated apoptosis, it only induced the accumulation of the EMT marker α-SMA protein, but not COL-1 or Fn. CONCLUSION: ROS contribute to TGF-ß2-induced EMT/ECM synthesis and cell apoptosis of HLECs; however, ROS alone are not sufficient for EMT/ECM synthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...