Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 624
Filtrar
1.
Neuroscience ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986736

RESUMO

Nerve injury can not only lead to sensory and motor dysfunction, but also be complicated with neuropathic pain (NPP), which brings great psychosomatic injury to patients. At present, there is no effective treatment for NPP. Based on the functional characteristics of cell transplantation in nerve regeneration and injury repair, cell therapy has been used in the exploratory treatment of NPP and has become a promising treatment of NPP. In this article, we discuss the current mainstream cell types for the treatment of NPP, including Schwann cells, olfactory ensheathing cells, neural stem cells and mesenchymal stem cells in the treatment of NPP. These bioactive cells transplanted into the host have pharmacological properties of decreasing pain threshold and relieving NPP by exerting nutritional support, neuroprotection, immune regulation, promoting axonal regeneration, and remyelination. Cell transplantation can also change the microenvironment around the nerve injury, which is conducive to the survival of neurons. It can effectively relieve pain by repairing the injured nerve and rebuilding the nerve function. At present, some preclinical and clinical studies have shown that some encouraging results have been achieved in NPP treatment based on cell transplantation. Therefore, we discussed the feasible strategy of cell transplantation as a treatment of NPP and the problems and challenges that need to be solved in the current application of cell transplantation in NPP therapy.

2.
4.
Microorganisms ; 12(6)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38930562

RESUMO

Salmonella enterica serovar Gallinarum biovar Gallinarum (SG) causes fowl typhoid, a notifiable infectious disease in poultry. However, the pathogenic mechanism of SG-induced systemic infection in chickens remains unclear. Thioredoxin reductase (TrxB) is a redox protein crucial for regulating various enzyme activities in Salmonella serovar, but the role in SG-induced chicken systemic infection has yet to be determined. Here, we constructed a mutant SG strain lacking the trxB gene (trxB::Cm) and used chicken embryo inoculation and chicken oral infection to investigate the role of trxB gene in the pathogenicity of SG. Our results showed that trxB::Cm exhibited no apparent differences in colony morphology and growth conditions but exhibited reduced tolerance to H2O2 and increased resistance to bile acids. In the chicken embryo inoculation model, there was no significant difference in the pathogenicity of trxB::Cm and wild-type (WT) strains. In the chicken oral infection, the WT-infected group exhibited typical clinical symptoms of fowl typhoid, with complete mortality between days 6 and 9 post infection. In contrast, the trxB::Cm group showed a 100% survival rate, with no apparent clinical symptoms or pathological changes observed. The viable bacterial counts in the liver and spleen of the trxB::Cm-infected group were significantly reduced, accompanied by decreased expression of cytokines and chemokines (IL-1ß, IL-6, IL-12, CXCLi1, TNF-α, and IFN-γ), which were significantly lower than those in the WT group. These results show that the pathogenicity of the trxB-deficient strain was significantly attenuated, indicating that the trxB gene is a crucial virulence factor in SG-induced systemic infection in chickens, suggesting that trxB may become a potentially effective target for controlling and preventing SG infection in chickens.

5.
J Steroid Biochem Mol Biol ; 243: 106560, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38917955

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a debilitating and progressive lung disease with an unknown cause that has few treatment options. 18ß-Glycyrrhetinic acid (18ß-GA) is the main bioactive component in licorice, exhibiting anti-inflammatory and antioxidant effects, while also holding certain application value in the metabolism and regulation of steroids. In this study, we demonstrated that 18ß-GA effectively alleviates bleomycin (BLM)-induced IPF by inhibiting the TGF-ß1/JAK2/STAT3 signaling axis. In vivo experiments demonstrate that 18ß-GA significantly attenuates pulmonary fibrosis progression by reducing lung inflammation, improving lung function, and decreasing collagen deposition. In vitro experiments reveal that 18ß-GA inhibits the activation and migration of TGF-ß1-induced fibroblasts. Furthermore, it regulates the expression of vimentin, N-cadherin and E-cadherin proteins, thereby inhibiting TGF-ß1-induced epithelial-mesenchymal transition (EMT) in lung alveolar epithelial cells. Mechanistically, 18ß-GA ameliorates pulmonary fibrosis by modulating the TGF-ß1/JAK2/STAT3 signaling pathway in activated fibroblasts. Taken together, our findings demonstrate the potential and underlying mechanisms of 18ß-GA in ameliorating IPF, emphasizing its potential as a novel therapeutic drug for the treatment of this devastating disease.

6.
Mol Omics ; 20(6): 417-429, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38940931

RESUMO

Objective: this study evaluates the prognostic relevance of gene subtypes and the role of kinesin family member 2C (KIF2C) in lung cancer progression. Methods: high-expression genes linked to overall survival (OS) and progression-free interval (PFI) were selected from the TCGA-LUAD dataset. Consensus clustering analysis categorized lung adenocarcinoma (LUAD) patients into two subtypes, C1 and C2, which were compared using clinical, drug sensitivity, and immunotherapy analyses. A random forest algorithm pinpointed KIF2C as a prognostic hub gene, and its functional impact was assessed through various assays and in vivo experiments. Results: The study identified 163 key genes and distinguished two LUAD subtypes with differing OS, PFI, pathological stages, drug sensitivity, and immunotherapy response. KIF2C, highly expressed in the C2 subtype, was associated with poor prognosis, promoting cancer cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT), with knockdown reducing tumor growth in mice. Conclusion: The research delineates distinct LUAD subtypes with significant clinical implications and highlights KIF2C as a potential therapeutic target for personalized treatment in LUAD.


Assuntos
Adenocarcinoma de Pulmão , Transição Epitelial-Mesenquimal , Cinesinas , Neoplasias Pulmonares , Cinesinas/genética , Cinesinas/metabolismo , Humanos , Animais , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Camundongos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Transição Epitelial-Mesenquimal/genética , Prognóstico , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Perfilação da Expressão Gênica , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Foods ; 13(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38890910

RESUMO

Dendrobium, a highly effective traditional Chinese medicinal herb, exhibits significant variations in efficacy and price among different varieties. Therefore, achieving an efficient classification of Dendrobium is crucial. However, most of the existing identification methods for Dendrobium make it difficult to simultaneously achieve both non-destructiveness and high efficiency, making it challenging to truly meet the needs of industrial production. In this study, we combined Laser-Induced Breakdown Spectroscopy (LIBS) with multivariate models to classify 10 varieties of Dendrobium. LIBS spectral data for each Dendrobium variety were collected from three circular medicinal blocks. During the data analysis phase, multivariate models to classify different Dendrobium varieties first preprocess the LIBS spectral data using Gaussian filtering and stacked correlation coefficient feature selection. Subsequently, the constructed fusion model is utilized for classification. The results demonstrate that the classification accuracy of 10 Dendrobium varieties reached 100%. Compared to Support Vector Machine (SVM), Random Forest (RF), and K-Nearest Neighbors (KNN), our method improved classification accuracy by 14%, 20%, and 20%, respectively. Additionally, it outperforms three models (SVM, RF, and KNN) with added Principal Component Analysis (PCA) by 10%, 10%, and 17%. This fully validates the excellent performance of our classification method. Finally, visualization analysis of the entire research process based on t-distributed Stochastic Neighbor Embedding (t-SNE) technology further enhances the interpretability of the model. This study, by combining LIBS and machine learning technologies, achieves efficient classification of Dendrobium, providing a feasible solution for the identification of Dendrobium and even traditional Chinese medicinal herbs.

8.
Front Vet Sci ; 11: 1401392, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846788

RESUMO

Salmonella enterica serovar Gallinarum (S. gallinarum) is an important host-specific pathogen that causes fowl typhoid, a severe systemic, septicemic, and fatal infection, in chickens. S. gallinarum causes high morbidity and mortality in chickens and poses a significant burden and economic losses to the poultry industry in many developing countries. However, the virulence factors and mechanisms of S. gallinarum-induced systemic infection in chickens remain poorly understood. In this study, we constructed a Salmonella pathogenicity island-14 (SPI-14) mutant strain (mSPI-14) of S. gallinarum and evaluated the pathogenicity of mSPI-14 in the chicken systemic infection model. The mSPI-14 exhibited the same level of bacterial growth and morphological characteristics but significantly reduced resistance to bile acids compared with the wild-type (WT) strain in vitro. The virulence of mSPI-14 was significantly attenuated in the chicken oral infection model in vivo. Chickens infected with WT showed typical clinical symptoms of fowl typhoid, with all birds succumbing to the infection within 6 to 9 days post-inoculation, and substantial increases in bacterial counts and significant pathological changes in the liver and spleen were observed. In contrast, all mSPI-14-infected chickens survived, the bacterial counts in the organs were significantly lower, and no significant pathological changes were observed in the liver and spleen. The expression of interleukin (IL)-1ß, IL-12, CXCLi1, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ in the liver of mSPI-14-infected chickens were significantly lower than those in the WT-infected chickens. These results indicate that SPI-14 is a crucial virulence factor in systemic infection of chickens, and avirulent mSPI-14 could be used to develop a new attenuated live vaccine to prevent S. gallinarum infection in chickens.

9.
Funct Integr Genomics ; 24(4): 118, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935217

RESUMO

Lung adenocarcinoma (LUAD) has a malignant characteristic that is highly aggressive and prone to metastasis. There is still a lack of suitable biomarkers to facilitate the refinement of precision-based therapeutic regimens. We used a combination of 10 known clustering algorithms and the omics data from 4 dimensions to identify high-resolution molecular subtypes of LUAD. Subsequently, consensus machine learning-related prognostic signature (CMRS) was developed based on subtypes related genes and an integrated program framework containing 10 machine learning algorithms. The efficiency of CMRS was analyzed from the perspectives of tumor microenvironment, genomic landscape, immunotherapy, drug sensitivity, and single-cell analysis. In terms of results, through multi-omics clustering, we identified 2 comprehensive omics subtypes (CSs) in which CS1 patients had worse survival outcomes, higher aggressiveness, mRNAsi and mutation frequency. Subsequently, we developed CMRS based on 13 key genes up-regulated in CS1. The prognostic predictive efficiency of CMRS was superior to most established LUAD prognostic signatures. CMRS demonstrated a strong correlation with tumor microenvironmental feature variants and genomic instability generation. Regarding clinical performance, patients in the high CMRS group were more likely to benefit from immunotherapy, whereas low CMRS were more likely to benefit from chemotherapy and targeted drug therapy. In addition, we evaluated that drugs such as neratinib, oligomycin A, and others may be candidates for patients in the high CMRS group. Single-cell analysis revealed that CMRS-related genes were mainly expressed in epithelial cells. The novel molecular subtypes identified in this study based on multi-omics data could provide new insights into the stratified treatment of LUAD, while the development of CMRS could serve as a candidate indicator of the degree of benefit of precision therapy and immunotherapy for LUAD.


Assuntos
Adenocarcinoma de Pulmão , Imunoterapia , Neoplasias Pulmonares , Aprendizado de Máquina , Microambiente Tumoral , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/terapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patologia , Prognóstico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Genômica , Multiômica
10.
Cell Signal ; 120: 111179, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38640980

RESUMO

S100P, a member of the S100 calcium-binding protein family, is closely associated with abnormal proliferation, invasion, and metastasis of various cancers. However, its role in the lung adenocarcinoma (LUAD) tumor microenvironment (TME) remains unclear. In this study, we observed specific expression of S100P on tumor cells in LUAD patients through tissue immunofluorescence analysis. Furthermore, this expression was strongly correlated with the recruitment and polarization of tumor-associated macrophages (TAMs). Bioinformatics analysis revealed that high S100P expression is associated with poorer overall survival in LUAD patients. Subsequently, a subcutaneous mouse model demonstrated that S100P promotes recruitment and polarization of TAMs towards the M2 type. Finally, in vitro studies on LUAD cells revealed that S100P enhances the secretion of chemokines and polarizing factors by activating the PKA/c-Jun pathway, which is implicated in TAM recruitment and polarization towards the M2 phenotype. Moreover, inhibition of c-Jun expression impedes the ability of TAMs to infiltrate and polarize towards the M2 phenotype. In conclusion, our study demonstrates that S100P facilitates LUAD cells growth by recruiting M2 TAMs through PKA/c-Jun signaling, resulting in the production of various cytokines. Considering these findings, S100P holds promise as an important diagnostic marker and potential therapeutic target for LUAD.


Assuntos
Proteínas de Ligação ao Cálcio , Macrófagos Associados a Tumor , Humanos , Animais , Macrófagos Associados a Tumor/metabolismo , Camundongos , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral , Transdução de Sinais , Feminino , Masculino , Progressão da Doença , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proliferação de Células , Polaridade Celular
11.
J Transl Med ; 22(1): 335, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589907

RESUMO

OBJECTIVE: This study aimed to assess the functions of cell division cycle protein 45 (CDC45) in Non-small cell lung cancer (NSCLC) cancer and its effects on stemness and metastasis. METHODS: Firstly, differentially expressed genes related to lung cancer metastasis and stemness were screened by differential analysis and lasso regression. Then, in vitro, experiments such as colony formation assay, scratch assay, and transwell assay were conducted to evaluate the impact of CDC45 knockdown on the proliferation and migration abilities of lung cancer cells. Western blotting was used to measure the expression levels of related proteins and investigate the regulation of CDC45 on the cell cycle. Finally, in vivo model with subcutaneous injection of lung cancer cells was performed to verify the effect of CDC45 on tumor growth. RESULTS: This study identified CDC45 as a key gene potentially influencing tumor stemness and lymph node metastasis. Knockdown of CDC45 not only suppressed the proliferation and migration abilities of lung cancer cells but also caused cell cycle arrest at the G2/M phase. Further analysis revealed a negative correlation between CDC45 and cell cycle-related proteins, stemness-related markers, and tumor mutations. Mouse experiments confirmed that CDC45 knockdown inhibited tumor growth. CONCLUSION: As a novel regulator of stemness, CDC45 plays a role in regulating lung cancer cell proliferation, migration, and cell cycle. Therefore, CDC45 may serve as a potential target for lung cancer treatment and provide a reference for further mechanistic research and therapeutic development.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , Adenocarcinoma de Pulmão/genética , Proliferação de Células/genética , Pontos de Checagem do Ciclo Celular/genética , Divisão Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
12.
Drug Metab Dispos ; 52(6): 526-538, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38565302

RESUMO

The human UDP-glucuronosyltransferases (UGTs) have crucial roles in metabolizing and clearing numerous small lipophilic compounds. The UGT1A locus generates nine UGT1A mRNAs, 65 spliced transcripts, and 34 circular RNAs. In this study, our analysis of published UGT-RNA capture sequencing (CaptureSeq) datasets identified novel splice junctions that predict 24 variant UGT1A transcripts derived from ligation of exon 2 to unique sequences within the UGT1A first-exon region using cryptic donor splice sites. Of these variants, seven (1A1_n1, 1A3_n3, 1A4_n4, 1A5_n1, 1A8_n2, 1A9_n2, 1A10_n7) are predicted to encode UGT1A proteins with truncated aglycone-binding domains. We assessed their expression profiles and deregulation in cancer using four RNA sequencing (RNA-Seq) datasets of paired normal and cancerous drug-metabolizing tissues from large patient cohorts. Variants were generally coexpressed with their canonical counterparts with a higher relative abundance in tumor than in normal tissues. Variants showed tissue-specific expression with high interindividual variability but overall low abundance. However, 1A8_n2 showed high abundance in normal and cancerous colorectal tissues, with levels that approached or surpassed canonical 1A8 mRNA levels in many samples. We cloned 1A8_n2 and showed expression of the predicted protein (1A8_i3) in human embryonic kidney (HEK)293T cells. Glucuronidation assays with 4-methylumbelliferone (4MU) showed that 1A8_i3 had no activity and was unable to inhibit the activity of 1A8_i1 protein. In summary, the activation of cryptic donor splice sites within the UGT1A first-exon region expands the UGT1A transcriptome and proteome. The 1A8_n2 cryptic donor splice site is highly active in colorectal tissues, representing an important cis-regulatory element that negatively regulates the function of the UGT1A8 gene through pre-mRNA splicing. SIGNIFICANT STATEMENT: The UGT1A locus generates nine canonical mRNAs, 65 alternately spliced transcripts, and 34 different circular RNAs. The present study reports a series of novel UDP-glucuronosyltransferase (UGT)1A variants resulting from use of cryptic donor splice sites in both normal and cancerous tissues, several of which are predicted to encode variant UGT1A proteins with truncated aglycone-binding domains. Of these, 1A8_n2 shows exceptionally high abundance in colorectal tissues, highlighting its potential role in the first-pass metabolism in gut through the glucuronidation pathway.


Assuntos
Éxons , Glucuronosiltransferase , Sítios de Splice de RNA , Humanos , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Éxons/genética , Sítios de Splice de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Domínios Proteicos/genética , Processamento Alternativo/genética
13.
Nat Commun ; 15(1): 1995, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443404

RESUMO

Cardiac macrophage contributes to the development of cardiac fibrosis, but factors that regulate cardiac macrophages transition and activation during this process remains elusive. Here we show, by single-cell transcriptomics, lineage tracing and parabiosis, that cardiac macrophages from circulating monocytes preferentially commit to macrophage-to-myofibroblast transition (MMT) under angiotensin II (Ang II)-induced hypertension, with accompanying increased expression of the RNA N6-methyladenosine demethylases, ALKBH5. Meanwhile, macrophage-specific knockout of ALKBH5 inhibits Ang II-induced MMT, and subsequently ameliorates cardiac fibrosis and dysfunction. Mechanistically, RNA immunoprecipitation sequencing identifies interlukin-11 (IL-11) mRNA as a target for ALKBH5-mediated m6A demethylation, leading to increased IL-11 mRNA stability and protein levels. By contrast, overexpression of IL11 in circulating macrophages reverses the phenotype in ALKBH5-deficient mice and macrophage. Lastly, targeted delivery of ALKBH5 or IL-11 receptor α (IL11RA1) siRNA to monocytes/macrophages attenuates MMT and cardiac fibrosis under hypertensive stress. Our results thus suggest that the ALKBH5/IL-11/IL11RA1/MMT axis alters cardiac macrophage and contributes to hypertensive cardiac fibrosis and dysfunction in mice, and thereby identify potential targets for cardiac fibrosis therapy in patients.


Assuntos
Adenina , Hipertensão , Interleucina-11 , Animais , Humanos , Camundongos , Adenina/análogos & derivados , Homólogo AlkB 5 da RNA Desmetilase , Angiotensina II , Cardiotônicos , Macrófagos , Miofibroblastos , RNA
14.
Front Bioeng Biotechnol ; 12: 1329712, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515621

RESUMO

The failure of endogenous repair is the main feature of neurological diseases that cannot recover the damaged tissue and the resulting dysfunction. Currently, the range of treatment options for neurological diseases is limited, and the approved drugs are used to treat neurological diseases, but the therapeutic effect is still not ideal. In recent years, different studies have revealed that neural stem cells (NSCs) have made exciting achievements in the treatment of neurological diseases. NSCs have the potential of self-renewal and differentiation, which shows great foreground as the replacement therapy of endogenous cells in neurological diseases, which broadens a new way of cell therapy. The biological functions of NSCs in the repair of nerve injury include neuroprotection, promoting axonal regeneration and remyelination, secretion of neurotrophic factors, immune regulation, and improve the inflammatory microenvironment of nerve injury. All these reveal that NSCs play an important role in improving the progression of neurological diseases. Therefore, it is of great significance to better understand the functional role of NSCs in the treatment of neurological diseases. In view of this, we comprehensively discussed the application and value of NSCs in neurological diseases as well as the existing problems and challenges.

15.
BMC Med Genomics ; 17(1): 77, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515109

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs) play a crucial role in the tumor microenvironment of lung adenocarcinoma (LUAD) and are often associated with poorer clinical outcomes. This study aimed to screen for CAF-specific genes that could serve as promising therapeutic targets for LUAD. METHODS: We established a single-cell transcriptional profile of LUAD, focusing on genetic changes in fibroblasts. Next, we identified key genes associated with fibroblasts through weighted gene co-expression network analysis (WGCNA) and univariate Cox analysis. Then, we evaluated the relationship between glutathione peroxidase 8 (GPX8) and clinical features in multiple independent LUAD cohorts. Furthermore, we analyzed immune infiltration to shed light on the relationship between GPX8 immune microenvironment remodeling. For clinical treatment, we used the tumor immune dysfunction and exclusion (TIDE) algorithm to assess the immunotherapy prediction efficiency of GPX8. After that, we screened potential therapeutic drugs for LUAD by the connectivity map (cMAP). Finally, we conducted a cell trajectory analysis of GPX8+ CAFs to show their unique function. RESULTS: Fibroblasts were found to be enriched in tumor tissues. Then we identified GPX8 as a key gene associated with CAFs through comprehensive bioinformatics analysis. Further analysis across multiple LUAD cohorts demonstrated the relationship between GPX8 and poor prognosis. Additionally, we found that GPX8 played a role in inducing the formation of an immunosuppressive microenvironment. The TIDE method indicated that patients with low GPX8 expression were more likely to be responsive to immunotherapy. Using the cMAP, we identified beta-CCP as a potential drug-related to GPX8. Finally, cell trajectory analysis provided insights into the dynamic process of GPX8+ CAFs formation. CONCLUSIONS: This study elucidates the association between GPX8+ CAFs and poor prognosis, as well as the induction of immunosuppressive formation in LUAD. These findings suggest that targeting GPX8+ CAFs could potentially serve as a therapeutic strategy for the treatment of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Fibroblastos Associados a Câncer , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Fibroblastos , Imunoterapia , Neoplasias Pulmonares/genética , Microambiente Tumoral , Prognóstico , Peroxidases
16.
Int J Nanomedicine ; 19: 2773-2791, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525009

RESUMO

Adoptive T cells immunotherapy, specifically chimeric antigen receptor T cells (CAR-T), has shown promising therapeutic efficacy in the treatment of hematologic malignancies. As extensive research on CAR-T therapies has been conducted, various challenges have emerged that significantly hampered their clinical application, including tumor recurrence, CAR-T cell exhaustion, and cytokine release syndrome (CRS). To overcome the hurdles of CAR-T therapy in clinical treatment, cell-free emerging therapies based on exosomes derived from CAR-T cells have been developed as an effective and promising alternative approach. In this review, we present CAR-T cell-based therapies for the treatment of tumors, including the features and benefits of CAR-T therapies, the limitations that exist in this field, and the measures taken to overcome them. Furthermore, we discuss the notable benefits of utilizing exosomes released from CAR-T cells in tumor treatment and anticipate potential issues in clinical trials. Lastly, drawing from previous research on exosomes from CAR-T cells and the characteristics of exosomes, we propose strategies to overcome these restrictions. Additionally, the review discusses the plight in large-scale preparation of exosome and provides potential solutions for future clinical applications.


Assuntos
Exossomos , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Terapia Baseada em Transplante de Células e Tecidos , Imunoterapia Adotiva , Linfócitos T , Neoplasias/terapia
17.
ChemistryOpen ; 13(7): e202300284, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38315083

RESUMO

Structural modification based on existing drugs, which ensures the safety of marketed drugs, is an essential approach in developing new drugs. In this study, we modified the structure of cabotegravir by introducing the front alkyne on the core structure through chemical reaction, resulting in the synthesis of 9 compounds resembling 1,2,3-triazoles. The potential of these new cabotegravir derivatives as tumor suppressors in gastrointestinal tumors was investigated. Based on the MTT experiment, most compounds showed a reduction in the viability of KYSE30 and HCT116 cells. Notably, derivatives 5b and 5h exhibited the most significant inhibitory effects. To further explore the effects of derivatives 5b and 5h on gastrointestinal tumors, KYSE30 cells were chosen as a representative cell line. Both derivatives can effectively curtail the migration and invasion capabilities of KYSE30 cells and induce apoptosis in a dose-dependent manner. We further demonstrated these derivatives induce cell apoptosis in KYSE30 cells by inhibiting the expression of Stat3 protein and Smad2/3 protein. Based on the above results, we suggest they show promise in developing drugs for esophageal squamous cell carcinoma.


Assuntos
Antineoplásicos , Apoptose , Movimento Celular , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Piridinas/química , Piridinas/farmacologia , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteína Smad2/metabolismo , Domínio Catalítico , Proteína Smad3/metabolismo , Células HCT116 , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Piridonas , Dicetopiperazinas
18.
Int J Gen Med ; 17: 387-399, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333018

RESUMO

Objective: This study was to investigate the mechanism of action and clinical efficacy of fire-needle therapy in improving neurological function in patients with acute cerebral infarction (identified as a wind-phlegm-blood stasis syndrome in traditional Chinese medicine). Methods: We included patients diagnosed with acute cerebral infarction (wind-phlegm-blood stasis syndrome) admitted to the Encephalopathy and Acupuncture Center of the Second Affiliated Hospital of Tianjin University of Chinese Medicine. We randomly allocated them into the treatment and control groups, with 45 cases in each group. Acupuncture treatments that focused on regulating the mind and dredging the collaterals were used in the control group, while the treatment group additionally received fire-needle therapy. Our indicators included the National Institutes of Health Stroke Scale (NIHSS) scores, the Fugl-Meyer Assessment (FMA) scale, peripheral blood tumor necrosis factor-α (TNF-α), interleukin-17 (IL-17), hypersensitivity C-reactive protein (hs-CRP), and intestinal metabolites short-chain fatty acids (SCFAs). We measured these indicators before treatment and 14 days after treatment. Results: The post-treatment NIHSS scores of the two groups were significantly reduced (P < 0.05), and the treatment group showed a more significant decline in the score when compared to the control group (P < 0.05). The treatment group showing significant improvement in the domains of reflex activity, mobility, cooperative movement, and finger movement (P < 0.05). Both groups showed a significant decrease in the IL-17 and hs-CRP levels (P < 0.05), with the treatment group demonstrating a significant declining trend when compared to the control group (P < 0.05). The levels of acetic acid, propionic acid, butyric acid, and valeric acid all increased significantly in the two groups (P < 0.05), with acetic acid and butyric acid increasing significantly in the treatment group when compared to the control group (P < 0.05). Clinical efficacy rate: 78.6% of patients in the treatment group had an excellent rate, whereas it was 30.0% in the control group, and the difference was statistically significant (P < 0.001). Conclusion: Fire-needle therapy was effective in upregulating the SCFA content in patients with acute cerebral infarction (wind-phlegm-blood stasis syndrome), inhibiting the level of the inflammatory response, and improving the recovery of neurological functions. Clinical registration number: Registration website link: https://www.chictr.org.cn. Registration date: 2022/9/27. Registration number: ChiCTR2200064122.

19.
Molecules ; 29(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276616

RESUMO

Silicosis is a complex occupational disease without recognized effective treatment. Celastrol, a natural product, has shown antioxidant, anti-inflammatory, and anti-fibrotic activities, but the narrow therapeutic window and high toxicity severely limit its clinical application. Through structural optimization, we have identified a highly efficient and low-toxicity celastrol derivative, CEL-07. In this study, we systematically investigated the therapeutic potential and underlying mechanisms of CEL-07 in silicosis fibrosis. By constructing a silicosis mouse model and analyzing with HE, Masson, Sirius Red, and immunohistochemical staining, CEL-07 significantly prevented the progress of inflammation and fibrosis, and it effectively improved the lung respiratory function of silicosis mice. Additionally, CEL-07 markedly suppressed the expression of inflammatory factors (IL-6, IL-1α, TNF-α, and TNF-ß) and fibrotic factors (α-SMA, collagen I, and collagen III), and promoted apoptosis of fibroblasts by increasing ROS accumulation. Moreover, bioinformatics analysis combined with experimental validation revealed that CEL-07 inhibited the pathways associated with inflammation (PI3K-AKT and JAK2-STAT3) and the expression of apoptosis-related proteins. Overall, these results suggest that CEL-07 may serve as a potential candidate for the treatment of silicosis.


Assuntos
Triterpenos Pentacíclicos , Dióxido de Silício , Silicose , Camundongos , Animais , Espécies Reativas de Oxigênio/farmacologia , Dióxido de Silício/farmacologia , Fosfatidilinositol 3-Quinases , Silicose/tratamento farmacológico , Silicose/metabolismo , Silicose/prevenção & controle , Fibrose , Colágeno/farmacologia , Inflamação , Apoptose , Fibroblastos
20.
J Am Heart Assoc ; 13(3): e029427, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38293915

RESUMO

BACKGROUND: The right ventricle (RV) is at risk in patients with complex congenital heart disease involving right-sided obstructive lesions. We have shown that capillary rarefaction occurs early in the pressure-loaded RV. Here we test the hypothesis that microRNA (miR)-34a, which is induced in RV hypertrophy and RV failure (RVF), blocks the hypoxia-inducible factor-1α-vascular endothelial growth factor (VEGF) axis, leading to the attenuated angiogenic response and increased susceptibility to RV failure. METHODS AND RESULTS: Mice underwent pulmonary artery banding to induce RV hypertrophy and RVF. Capillary rarefaction occurred immediately. Although hypoxia-inducible factor-1α expression increased (0.12±0.01 versus 0.22±0.03, P=0.05), VEGF expression decreased (0.61±0.03 versus 0.22±0.05, P=0.01). miR-34a expression was most upregulated in fibroblasts (4-fold), but also in cardiomyocytes and endothelial cells (2-fold). Overexpression of miR-34a in endothelial cells increased cell senescence (10±3% versus 22±2%, P<0.05) by suppressing sirtulin 1 expression, and decreased tube formation by 50% via suppression of hypoxia-inducible factor-1α, VEGF A, VEGF B, and VEGF receptor 2. miR-34a was induced by stretch, transforming growth factor-ß1, adrenergic stimulation, and hypoxia in cardiac fibroblasts and cardiomyocytes. In mice with RVF, locked nucleic acid-antimiR-34a improved RV shortening fraction and survival half-time and restored capillarity and VEGF expression. In children with congenital heart disease-related RVF, RV capillarity was decreased and miR-34a increased 5-fold. CONCLUSIONS: In summary, miR-34a from fibroblasts, cardiomyocytes, and endothelial cells mediates capillary rarefaction by suppressing the hypoxia-inducible factor-1α-VEGF axis in RV hypertrophy/RVF, raising the potential for anti-miR-34a therapeutics in patients with at-risk RVs.


Assuntos
Cardiopatias Congênitas , Insuficiência Cardíaca , MicroRNAs , Rarefação Microvascular , Criança , Humanos , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Angiogênese , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Rarefação Microvascular/metabolismo , Insuficiência Cardíaca/metabolismo , Hipertrofia Ventricular Direita , Miócitos Cardíacos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Cardiopatias Congênitas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...