Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(3): E418-E427, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29158412

RESUMO

Fibrous dysplasia (FD; Online Mendelian Inheritance in Man no. 174800) is a crippling skeletal disease caused by activating mutations of the GNAS gene, which encodes the stimulatory G protein Gαs FD can lead to severe adverse conditions such as bone deformity, fracture, and severe pain, leading to functional impairment and wheelchair confinement. So far there is no cure, as the underlying molecular and cellular mechanisms remain largely unknown and the lack of appropriate animal models has severely hampered FD research. Here we have investigated the cellular and molecular mechanisms underlying FD and tested its potential treatment by establishing a mouse model in which the human FD mutation (R201H) has been conditionally knocked into the corresponding mouse Gnas locus. We found that the germ-line FD mutant was embryonic lethal, and Cre-induced Gnas FD mutant expression in early osteochondral progenitors, osteoblast cells, or bone marrow stromal cells (BMSCs) recapitulated FD features. In addition, mosaic expression of FD mutant Gαs in BMSCs induced bone marrow fibrosis both cell autonomously and non-cell autonomously. Furthermore, Wnt/ß-catenin signaling was up-regulated in FD mutant mouse bone and BMSCs undergoing osteogenic differentiation, as we have found in FD human tissue previously. Reduction of Wnt/ß-catenin signaling by removing one Lrp6 copy in an FD mutant line significantly rescued the phenotypes. We demonstrate that induced expression of the FD Gαs mutant from the mouse endogenous Gnas locus exhibits human FD phenotypes in vivo, and that inhibitors of Wnt/ß-catenin signaling may be repurposed for treating FD and other bone diseases caused by Gαs activation.


Assuntos
Cromograninas/metabolismo , Displasia Fibrosa Óssea/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Diferenciação Celular , Cromograninas/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica , Humanos , Células-Tronco Mesenquimais/fisiologia , Mutação , Osteoblastos/fisiologia , Transdução de Sinais , Regulação para Cima , Proteínas Wnt/genética , beta Catenina/genética
2.
J Am Soc Nephrol ; 28(4): 1073-1078, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27799484

RESUMO

Tight control of extracellular and intracellular inorganic phosphate (Pi) levels is critical to most biochemical and physiologic processes. Urinary Pi is freely filtered at the kidney glomerulus and is reabsorbed in the renal tubule by the action of the apical sodium-dependent phosphate transporters, NaPi-IIa/NaPi-IIc/Pit2. However, the molecular identity of the protein(s) participating in the basolateral Pi efflux remains unknown. Evidence has suggested that xenotropic and polytropic retroviral receptor 1 (XPR1) might be involved in this process. Here, we show that conditional inactivation of Xpr1 in the renal tubule in mice resulted in impaired renal Pi reabsorption. Analysis of Pi transport in primary cultures of proximal tubular cells or in freshly isolated renal tubules revealed that this Xpr1 deficiency significantly affected Pi efflux. Further, mice with conditional inactivation of Xpr1 in the renal tubule exhibited generalized proximal tubular dysfunction indicative of Fanconi syndrome, characterized by glycosuria, aminoaciduria, calciuria, and albuminuria. Dramatic alterations in the renal transcriptome, including a significant reduction in NaPi-IIa/NaPi-IIc expression, accompanied these functional changes. Additionally, Xpr1-deficient mice developed hypophosphatemic rickets secondary to renal dysfunction. These results identify XPR1 as a major regulator of Pi homeostasis and as a potential therapeutic target in bone and kidney disorders.


Assuntos
Síndrome de Fanconi/etiologia , Néfrons , Receptores Acoplados a Proteínas G/fisiologia , Receptores Virais/fisiologia , Raquitismo Hipofosfatêmico/etiologia , Animais , Feminino , Masculino , Camundongos , Receptor do Retrovírus Politrópico e Xenotrópico
3.
J Clin Invest ; 121(11): 4383-92, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21965325

RESUMO

Mutations in human FYVE, RhoGEF, and PH domain-containing 1 (FGD1) cause faciogenital dysplasia (FGDY; also known as Aarskog syndrome), an X-linked disorder that affects multiple skeletal structures. FGD1 encodes a guanine nucleotide exchange factor (GEF) that specifically activates the Rho GTPase CDC42. However, the mechanisms by which mutations in FGD1 affect skeletal development are unknown. Here, we describe what we believe to be a novel signaling pathway in osteoblasts initiated by FGD1 that involves the MAP3K mixed-lineage kinase 3 (MLK3). We observed that MLK3 functions downstream of FGD1 to regulate ERK and p38 MAPK, which in turn phosphorylate and activate the master regulator of osteoblast differentiation, Runx2. Mutations in FGD1 found in individuals with FGDY ablated its ability to activate MLK3. Consistent with our description of this pathway and the phenotype of patients with FGD1 mutations, mice with a targeted deletion of Mlk3 displayed multiple skeletal defects, including dental abnormalities, deficient calvarial mineralization, and reduced bone mass. Furthermore, mice with knockin of a mutant Mlk3 allele that is resistant to activation by FGD1/CDC42 displayed similar skeletal defects, demonstrating that activation of MLK3 specifically by FGD1/CDC42 is important for skeletal mineralization. Thus, our results provide a putative biochemical mechanism for the skeletal defects in human FGDY and suggest that modulating MAPK signaling may benefit these patients.


Assuntos
Desenvolvimento Ósseo/genética , Desenvolvimento Ósseo/fisiologia , Nanismo/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Deformidades Congênitas da Mão/genética , Cardiopatias Congênitas/genética , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/fisiologia , Mutação , Proteínas/genética , Proteínas/fisiologia , Animais , Modelos Animais de Doenças , Nanismo/patologia , Nanismo/fisiopatologia , Ativação Enzimática , Face/anormalidades , Face/patologia , Face/fisiopatologia , Feminino , Técnicas de Introdução de Genes , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Genitália Masculina/anormalidades , Genitália Masculina/patologia , Genitália Masculina/fisiopatologia , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Deformidades Congênitas da Mão/patologia , Deformidades Congênitas da Mão/fisiopatologia , Cardiopatias Congênitas/patologia , Cardiopatias Congênitas/fisiopatologia , Humanos , MAP Quinase Quinase Quinases/deficiência , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Osteoblastos/patologia , Osteoblastos/fisiologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...