Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 265: 116121, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38194777

RESUMO

TP53, also known as the "guardian of the genome," is an important tumor suppressor gene. It is encoded by the human genome and is associated with the development of diverse cancers. The p53 protein, encoded by TP53, functions in the cell to monitor DNA damage and prompts the cell to respond appropriately. When DNA is damaged, p53 halts the cell cycle, allowing cells to enter the repair state. If the repair is ineffective, p53 induces cell death via apoptosis. This prevents DNA damage transmission during cell division and reduces cancer risk. However, the p53 gene mutation compromises its function. This leads to the inability of cells to respond properly to DNA damage, which may result in cancer development. Mutations in p53 are widespread in diverse cancers, especially highly prevalent cancers, including breast, colon, and lung cancers. Despite the association between p53 mutations and cancer, researchers have discovered drugs and treatments that may reactivate mutated p53 function. Therefore, p53 remains an important area of research in cancer treatment and holds promise as a new direction for cancer therapy. In summary, TP53 is a vital tumor suppressor gene responsible for monitoring DNA damage and prompting cells to respond appropriately. This article summarizes drugs related to p53 and diverse strategies for discovering drugs that act on either wide or mutant p53. Herein, p53 is categorized into two types: wild and mutant type. Drugs are also classified according to diverse treatment strategies, enabling readers to differentiate between the two types of p53 and aiding in selecting the appropriate research direction. Additionally, this review offers a valuable reference for drug design.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Mutação , Dano ao DNA , Apoptose
2.
Front Mol Biosci ; 10: 1163089, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441164

RESUMO

The morbidity and mortality of colorectal cancer (CRC) have been increasing in recent years, and early detection of CRC can improve the survival rate of patients. RNA methylation plays crucial roles in many biological processes and has been implicated in the initiation of various diseases, including cancer. Serum contains a variety of biomolecules and is an important clinical sample for biomarker discovery. In this study, we developed a targeted metabolomics method for the quantitative analysis of nucleosides in human serum samples by using liquid chromatography with tandem mass spectrometry (LC-MS/MS). We successfully quantified the concentrations of nucleosides in serum samples from 51 healthy controls, 37 patients with colorectal adenomas, and 55 patients with CRC. The results showed that the concentrations of N 6-methyladenosine (m6A), N 1-methyladenosine (m1A), and 3-methyluridine (m3U) were increased in patients with CRC, whereas the concentrations of N 2-methylguanosine (m2G), 2'-O-methyluridine (Um), and 2'-O-methylguanosine (Gm) were decreased in patients with CRC, compared with the healthy controls and patients with colorectal adenomas. Moreover, the levels of 2'-O-methyluridine and 2'-O-methylguanosine were lower in patients with colorectal adenomas than those in healthy controls. Interestingly, the levels of Um and Gm gradually decreased in the following order: healthy controls to colorectal adenoma patients to CRC patients. These results revealed that the aberrations of these nucleosides were tightly correlated to colorectal adenomas and CRC. In addition, the present work will stimulate future investigations about the regulatory roles of these nucleosides in the initiation and development of CRC.

3.
Front Neurosci ; 12: 635, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30258350

RESUMO

Previous studies have demonstrated that total flavonoid extracts from Caragana sinica (TFC) exert multiple therapeutic effects, promote blood flow, and exhibit anti-inflammatory and antioxidant properties. The present study aimed to investigate whether TFC promotes angiogenesis and exerts neuroprotective effects in a rat model of transient middle cerebral artery occlusion (tMCAO). Male Wistar rats were subjected to tMCAO for 1.5 h, followed by 24 h of reperfusion. TFC (15, 30, 60 mg/kg) was administered for 14 days. Evaluations of neurological function were performed following reperfusion, and infarct volumes were assessed in brain slices stained with 2,3,5-triphenyltetrazolium chloride (TTC). Our results indicated that TFC significantly attenuated cerebral infarct volume and neurological deficits following tMCAO. Laser Doppler, micro-PET/CT, and MRI analyses further demonstrated that TFC reduced infarct volume and enhanced cerebral blood flow in a dose-dependent manner, with the most significant effects occurring at a concentration of 60 mg/kg. Significant up-regulation of CD31, VEGF, Ang-1, HIF-1α, delta-like 4 (Dll4), and Notch1 expression was also observed in the experimental groups, relative to that in the vehicle group. In summary, the results of the present study indicate that TFC (15, 30, 60 mg/kg) attenuates neurological deficits, reduces infarct volume, and promotes angiogenesis following MCAO in a concentration-dependent manner, likely via increases in the expression of CD31, VEGF, Ang-1, HIF-1α, Dll4, and Notch1. Further studies are required to determine the clinical usefulness and potential mechanisms of TFC in patients with cerebral focal ischemic stroke.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...