Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 50(43): 15888-15899, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34709269

RESUMO

Four N-phenylcarbazole/triphenylamine-appended half-sandwich iridium(III) salicylaldehyde Schiff base complexes ([(η5-Cpx)Ir(O^N)Cl]) were prepared and characterized. The complexes exhibited similar antitumor activity to cisplatin and effectively inhibited the migration of tumor cells. Furthermore, the complexes showed favourable hydrolytic activity, while remaining relatively stable in the plasma environment, which facilitated the binding of serum proteins and transport through them. These complexes could decrease the mitochondrial membrane potential, catalyze the oxidation of nicotinamide adenine dinucleotide, induce an increase in intracellular reactive oxygen species (ROS), and eventually result in apoptosis. Aided by their suitable fluorescence property, laser confocal detection showed that the complexes followed an energy-dependent mechanism for their cellular uptake, effectively accumulating in the lysosome and leading to lysosomal damage. In summary, the half-sandwich iridium(III) salicylaldehyde Schiff base complexes could induce lysosomal damage, increase intracellular ROS, and lead to apoptosis, which contributed to their antitumor mechanism of oxidation.

2.
ACS Appl Mater Interfaces ; 12(48): 54146-54154, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33211492

RESUMO

Heterogeneous catalysts with atomically precise metal sites have enabled unique insight into structure-property relationships in materials science. Herein, we report the construction and selective hydrogenation performance of a single-atom palladium catalyst by confining the palladium atoms into the six-fold N-coordinating cavities of graphitic carbon nitride (g-C3N4) through a facile spatial confinement-reduction approach under mild reducing conditions. Spherical aberration correction electron microscopy and extended X-ray absorption fine structure measurements confirm the presence of atomically dispersed palladium atoms stabilized by the g-C3N4 support. Its exceptional catalytic activity was demonstrated by the hydrogenation of styrene (98% conversion, 1.5 h) and furfural (conversion of 64% and selectivity of 99%, 4 h) and hydrodechlorination of 4-chlorophenol (99% conversion and 99% selectivity, 10 min). This palladium catalyst can be reused at least five times with negligible deterioration of its activity. Importantly, the palladium atoms retained their atomic dispersion following the thermal treatment. Moreover, this synthetic method can be scaled up while retaining similar catalytic activity. Fundamental insights are provided to elucidate how the material's structure significantly impacts the catalytic performance at the atomic scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...