Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(7)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37049719

RESUMO

The demand for antimicrobial materials is gradually increasing due to the threat of infections and diseases caused by microorganisms. Silver nanoparticles (AgNPs) are widely used because of their broad-spectrum antimicrobial properties, but their synthesis methods are often environmentally harmful and AgNPs difficult to isolate, which limits their application in several fields. In this study, an aqueous solution of dialdehyde cellulose (DAC) was prepared and used as a reducing agent to synthesize AgNPs in an efficient and environmentally friendly process. The synthesized AgNPs can be easily separated from the reducing agent to expand their applications. In addition, the AgNPs were immobilized in situ on dialdehyde cellulose to form antibacterial composite films. The results showed that the prepared silver nanoparticles were mainly spherical and uniformly dispersed, with an average size of about 25 nm under optimal conditions. Moreover, the dialdehyde cellulose-nanosilver (DAC@Ag) composite films had excellent mechanical properties, positive transparency, ultraviolet-blocking properties, and effective antibacterial activity against E. coli and S. aureus. Notably, the composite films exhibited excellent oxygen and water vapor barrier properties, with WVT and ORT of 136.41 g/m2·24 h (30 °C, 75% RH) and <0.02 cm3/m2·24 h·0.1 MPa (30 °C, 75% RH), respectively, better than commercial PE films. Hence, this study not only provides an environmentally friendly method for the preparation of silver nanoparticles, but also offers a simple and novel strategy for the in situ synthesis of silver-loaded antibacterial composite films.


Assuntos
Nanopartículas Metálicas , Substâncias Redutoras , Prata , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacologia
2.
ACS Appl Mater Interfaces ; 14(12): 14640-14653, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35290013

RESUMO

Aramid nanofibers (ANFs) have great potential for civil and military applications due to their remarkable mechanical modulus, excellent chemical reliability, and superior thermostability. Unfortunately, the weak combination of neighboring ANFs limits the mechanical properties of ANF-based materials owing to their inherent rigidity and chemical inertness. Herein, high-performance nanopapers are fabricated by introducing a tiny amount of cellulose nanofibrils (CNFs) to serve as reinforcing blocks via vacuum filtration. As a result of the formation of nanosized building blocks and hydrogen-bonding interaction of CNFs, the resultant ANF/CNF nanopaper yields a record-high tensile strength (406.43 ± 16.93 MPa) and toughness (86.13 ± 5.22 MJ m-3), which are 1.8 and 4.3 times higher than those of the pure ANF nanopaper, respectively. When normalized by weight, the specific tensile strength of the nanopaper is as high as 307.90 MPa·g-1·cm3, which is even significantly superior to that of titanium alloys (257 MPa·g-1·cm3). The ANF/CNF nanopaper also possesses excellent dielectric strength (53.42 kV mm-1), superior UV-shielding performance (≥99.999% absorption for ultraviolet radiation), and a favorable thermostability (Tonset = 530 °C). This study proposes a new design strategy for developing ultrathin ANF-based nanopapers combined with high reliability and thermostability for application in high-end electrical insulation fields, such as 5G communication, wearable electronics, and artificial intelligence.

3.
Carbohydr Polym ; 254: 117474, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33357928

RESUMO

In current study, CNFs produced by different mechanical methods, were used to improve the mechanical properties of recycled paper. The result showed the morphology of CNFs had great impact on reinforced effect and the length of fibrils determined their contribution in recycled paper strength. For different CNFs with similar diameter, the higher aspect ratio resulted in better reinforced effect. The CNFs produced by microfluidic homogenization and suitable PFI milling conditions (RM-CNF1) got best reinforced effect which improved tensile index and burst index by 35.5 % and 49.4 % at 5.0 wt% addition, respectively, due to their high aspect ratio. Although the CNFs produced by ball milling and ultrasonication (BU-CNF2) still had many bundles that were not fibrillated completely, their reinforced effect just below RM-CNF1 due to their special morphology and high retention rate. This work aims to study the influence of CNFs on recycled fibers reinforcement.

4.
ACS Appl Bio Mater ; 3(11): 7483-7491, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-35019490

RESUMO

Efficient selective separation of oils or organic pollutants from water is important for ecological, environmental conservation and sustainable development. Various absorption methods have emerged; the majority of them still suffer from defects including low removal efficiency, a complicated preparation process, and high cost. Herein, we present a highly porous and mechanical resilient bacterial cellulose (BC) carbon aerogel directly from BC hydrogel via facile directional freeze-drying and high-temperature carbonization. The resultant BC carbon aerogel showed excellent mechanical compressibility (maximal height compression ∼99.5%) and elastic recovery due to the porous structure. Taking advantages of the high thermal stability and superhydrophobicity, the BC carbon aerogel was directly used as a versatile adsorbent for oil/water separation. The result demonstrated that the BC carbon aerogel showed super oil/water separation selectivity with the oil absorption capacity as high as 132-274 g g-1. More importantly, the BC carbon aerogel adsorbent can be reused by a simple absorption/combustion method and still keep high-efficiency oil absorption capacity and excellent superhydrophobicity after 20 absorption/combustion cycles, displaying recyclability and robust stability. In sum, the BC carbon aerogel introduced here is easy to fabricate, ecofriendly, highly scalable, low cost, mechanically robust, and reusable; all of these features make it highly attractive for oil/water separation application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...