Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 332: 118356, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38763372

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Parasitic infections impose a significant burden on public health worldwide. European pharmacopoeia records and ethnopharmacological studies indicate that Hagenia abyssinica (Bruce) J.F. Gmel. has traditionally been used to treat a variety of parasitic infections, while the potential antiparasitic compounds remain ambiguous. AIM OF THE STUDY: Acetylcholinesterase (AChE), lactate dehydrogenases (LDH), and glutathione reductase (GR) are the key target enzymes in the survival of parasites. The aim of our work was to screen antiparasitic compounds targeting AChE, LDH, and GR from H. abyssinica. MATERIALS AND METHODS: Ultrafiltration-liquid chromatography-mass spectrometry (UF-LC-MS) combined with molecular docking was used in this study. Therein, the alamarBlue® and Ellman's methods were employed to reveal the antitrypanosomal effect and AChE inhibitory activity. Meanwhile, the UF-LC-MS was carried out to screen the potential active compounds from H. abyssinica. Subsequently, molecular docking was performed to evaluate the binding mechanisms of these active compounds with AChE, LDH, and GR. Finally, the AChE inhibitory activity of potential inhibitors was detected in vitro. RESULTS: H. abyssinica exhibited significant antitrypanosomal and AChE inhibitory activity. Corilagin, brevifolin carboxylic acid, brevifolin, quercetin, and methyl ellagic acid were recognized as potential AChE inhibitors by UF-LC-MS, while methyl brevifolin carboxylate was identified as AChE, LDH, and GR multi-target inhibitor, with binding degree ranged from 20.96% to 49.81%. Molecular docking showed that these potential inhibitors had a strong affinity with AChE, LDH, and GR, with binding energies ranging from -6.98 to -9.67 kcal/mol. These findings were further supported by the observation that corilagin, quercetin, brevifolin carboxylic acid, and methyl brevifolin carboxylate displayed significant AChE inhibitory activity compared with the positive control (gossypol, 0.42 ± 0.04 mM), with IC50 values of 0.15 ± 0.05, 0.56 ± 0.03, 0.99 ± 0.01, and 1.02 ± 0.03 mM, respectively. CONCLUSIONS: This study confirms the antiparasitic potential of H. abyssinica, supporting the traditional use of H. abyssinica in local ethnopharmacology to treat parasites. At the same time, corilagin, brevifolin carboxylic acid, brevifolin, quercetin, methyl ellagic acid, and methyl brevifolin carboxylate exert their anti-parasitic effects by inhibiting AChE, LDH, and GR, and they are expected to be natural lead compounds for the treatment of parasitic diseases.


Assuntos
Acetilcolinesterase , Inibidores da Colinesterase , Glutationa Redutase , Espectrometria de Massas , Simulação de Acoplamento Molecular , Extratos Vegetais , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Glutationa Redutase/antagonistas & inibidores , Glutationa Redutase/metabolismo , Acetilcolinesterase/metabolismo , L-Lactato Desidrogenase/antagonistas & inibidores , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/química , Ultrafiltração , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Antiparasitários/farmacologia , Antiparasitários/química , Taninos Hidrolisáveis/farmacologia , Taninos Hidrolisáveis/química , Espectrometria de Massa com Cromatografia Líquida
2.
Nature ; 629(8014): 1091-1099, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38750363

RESUMO

The baobab trees (genus Adansonia) have attracted tremendous attention because of their striking shape and distinctive relationships with fauna1. These spectacular trees have also influenced human culture, inspiring innumerable arts, folklore and traditions. Here we sequenced genomes of all eight extant baobab species and argue that Madagascar should be considered the centre of origin for the extant lineages, a key issue in their evolutionary history2,3. Integrated genomic and ecological analyses revealed the reticulate evolution of baobabs, which eventually led to the species diversity seen today. Past population dynamics of Malagasy baobabs may have been influenced by both interspecific competition and the geological history of the island, especially changes in local sea levels. We propose that further attention should be paid to the conservation status of Malagasy baobabs, especially of Adansonia suarezensis and Adansonia grandidieri, and that intensive monitoring of populations of Adansonia za is required, given its propensity for negatively impacting the critically endangered Adansonia perrieri.


Assuntos
Adansonia , Filogenia , Adansonia/classificação , Adansonia/genética , Biodiversidade , Conservação dos Recursos Naturais , Ecologia , Espécies em Perigo de Extinção , Evolução Molecular , Genoma de Planta/genética , Madagáscar , Dinâmica Populacional , Elevação do Nível do Mar
3.
PhytoKeys ; 242: 1-8, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38764934

RESUMO

In this study, we describe and illustrate a new species, Primulaweiliei L.S.Yang, Z.K.Wu & G.W.Hu, from the Shennongjia Forestry District, Hubei Province in Central China. It is morphologically assigned to Primulasect.Aleuritia based on its dwarf and hairless habit, long petiole, fruits longer than calyx and covered by farina on the scape. This new species is similar to P.gemmifera and P.munroisubsp.yargongensis in the same section, but it can be distinguished by its smaller calyxes, homostylous flowers, corolla tube throat without annular appendage and only 1-2 flowers in each inflorescence. Based on the assessment conducted according to the IUCN Red List criteria, we propose that P.weiliei be classified as a Critically Endangered (CR) species.

4.
BMC Genomics ; 25(1): 322, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561677

RESUMO

BACKGROUND: Primulina hunanensis, a troglobitic plant within the Primulina genus of Gesneriaceae family, exhibits robust resilience to arid conditions and holds great horticultural potential as an ornamental plant. The work of chloroplast genome (cpDNA) has been recently accomplished, however, the mitochondrial genome (mtDNA) that is crucial for plant evolution has not been reported. RESULTS: In this study, we sequenced and assembled the P. hunanensis complete mtDNA, and elucidated its evolutionary and phylogenetic relationships. The assembled mtDNA spans 575,242 bp with 43.54% GC content, encompassing 60 genes, including 37 protein-coding genes (PCGs), 20 tRNA genes, and 3 rRNA genes. Notably, high number of repetitive sequences in the mtDNA and substantial sequence translocation from chloroplasts to mitochondria were observed. To determine the evolutionary and taxonomic positioning of P. hunanensis, a phylogenetic tree was constructed using mitochondrial PCGs from P. hunanensis and 32 other taxa. Furthermore, an exploration of PCGs relative synonymous codon usage, identification of RNA editing events, and an investigation of collinearity with closely related species were conducted. CONCLUSIONS: This study reports the initial assembly and annotation of P. hunanensis mtDNA, contributing to the limited mtDNA repository for Gesneriaceae plants and advancing our understanding of their evolution for improved utilization and conservation.


Assuntos
Genoma de Cloroplastos , Genoma Mitocondrial , Lamiales , Filogenia , DNA Mitocondrial/genética , Lamiales/genética , Mitocôndrias/genética
5.
Hortic Res ; 11(4): uhae038, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38595910

RESUMO

Cissus quadrangularis is a tetraploid species belonging to the Vitaceae family and is known for the Crassulacean acid metabolism (CAM) pathway in the succulent stem, while the leaves perform C3 photosynthesis. Here, we report a high-quality genome of C. quadrangularis comprising a total size of 679.2 Mb which was phased into two subgenomes. Genome annotation identified 51 857 protein-coding genes, while approximately 47.75% of the genome was composed of repetitive sequences. Gene expression ratios of two subgenomes demonstrated that the sub-A genome as the dominant subgenome played a vital role during the drought tolerance. Genome divergence analysis suggests that the tetraploidization event occurred around 8.9 million years ago. Transcriptome data revealed that pathways related to cutin, suberine, and wax metabolism were enriched in the stem during drought treatment, suggesting that these genes contributed to the drought adaption. Additionally, a subset of CAM-related genes displayed diurnal expression patterns in the succulent stems but not in leaves, indicating that stem-biased expression of existing genes contributed to the CAM evolution. Our findings provide insights into the mechanisms of drought adaptation and photosynthesis transition in plants.

6.
Plant Divers ; 46(1): 91-100, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38343590

RESUMO

Climate change poses a serious long-term threat to biodiversity. To effectively reduce biodiversity loss, conservationists need to have a thorough understanding of the preferred habitats of species and the variables that affect their distribution. Therefore, predicting the impact of climate change on species-appropriate habitats may help mitigate the potential threats to biodiversity distribution. Xerophyta, a monocotyledonous genus of the family Velloziaceae is native to mainland Africa, Madagascar, and the Arabian Peninsula. The key drivers of Xerophyta habitat distribution and preference are unknown. Using 308 species occurrence data and eight environmental variables, the MaxEnt model was used to determine the potential distribution of six Xerophyta species in Africa under past, current and future climate change scenarios. The results showed that the models had a good predictive ability (Area Under the Curve and True Skill Statistics values for all SDMs were more than 0.902), indicating high accuracy in forecasting the potential geographic distribution of Xerophyta species. The main bioclimatic variables that impacted potential distributions of most Xerophyta species were mean temperature of the driest quarter (Bio9) and precipitation of the warmest quarter (Bio18). According to our models, tropical Africa has zones of moderate and high suitability for Xerophyta taxa, which is consistent with the majority of documented species localities. The habitat suitability of the existing range of the Xerophyta species varied based on the climate scenario, with most species experiencing a range loss greater than the range gain regardless of the climate scenario. The projected spatiotemporal patterns of Xerophyta species help guide recommendations for conservation efforts.

7.
J Ethnobiol Ethnomed ; 20(1): 28, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419092

RESUMO

BACKGROUND: Medicinal plants have been used for centuries and are still relied upon by over 80% of the Ethiopian population. The people of Gamo, southern Ethiopia, have a rich cultural and traditional lifestyle with a long history of using plant resources for various uses including traditional herbal medicine. However, their traditional knowledge of traditional medicinal plants in Boreda Abaya District has not been explored Ethnobotanically yet, despite preserving diverse indigenous traditional medicinal plants. Hence, the study aimed to document and analyze traditional medicinal plants and associated traditional knowledge and practices used by local people. MATERIALS AND METHODS: Quantitative ethnobotanical data were collected via semi-structured interviews, face-to-face conversations, group discussions, and guided field trips between September 2022 and February 2023. In total, 92 informants participated, of which 25 were key informants. Quantitative data indices (informant consensus factor-ICF-and use report-Ur) were computed by MS Excel spreadsheet software. Scientific names of medicinal plants were checked via World Flora Online. RESULTS: In the present study, we recorded 188 traditional medicinal plant species belonging to 163 genera and 73 plant families. Lamiaceae (16 species), Asteraceae (16 species), Fabaceae (11 species), and Euphorbiaceae (8 species) contributed highest number of species and were found to be predominant family in the area. Leaves and seeds were most frequently used plant parts, and pounding (46%) was the main method to prepare remedies. The sudden sickness disease category scored the highest consensus (ICF: 0.35), followed by blood and circulatory-related disease categories (ICF: 0.33). The highest number of plant taxa (61 species) used to treat dermal disease has a 71-use report score, while fewer plant taxa (21 species) were utilized to treat genitourinary system-related disease category, having 25 use reports. Ocimum lamiifolium (Ur:56) and Moringa stenopetala (Ur:51) are widely used species and received highest use report value. CONCLUSION: Gamo people possess extensive traditional knowledge of ethnomedicine. The region's vegetation hosts diverse medicinal species, but deforestation, agriculture, and droughts threaten them. Local conservation practices require scientific support, prioritizing species having higher use reports (Ur), and in-depth investigations of promising species for drug development are essential.


Assuntos
População da África Oriental , Plantas Medicinais , Humanos , Fitoterapia/métodos , Etiópia , Etnobotânica/métodos
8.
Phytochem Anal ; 35(1): 28-39, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37571866

RESUMO

INTRODUCTION: Numerous species of the Euphorbiaceae family, including Euphorbia maculata, Euphorbia humifusa, and Acalypha australis, have been used to manage bleeding disorders. However, few investigations have demonstrated their hemostatic potential, and their procoagulant compounds remain elusive. OBJECTIVE: This study aimed to determine the most active procoagulant extracts from the three species' crude extract (CE) and fractions in order to screen out the active compounds and to analyze their possible mechanisms of action. METHODS: An integrative approach, comprising prothrombin time and activated partial thromboplastin time evaluations and urokinase-type plasminogen activator (uPA) inhibitory assessment, followed by bio-affinity ultrafiltration paired with UPLC/QTOF-MS targeting uPA and docking simulations, was used. RESULTS: The extracts with highest procoagulant activity were the CE for both E. maculata (EMCE) and E. humifusa (EHCE) and the n-butanol fraction (NB) for A. australis (AANB). The most promising ligands, namely, isoquercetin, orientin, rutin, and brevifolin carboxylic acid, were selected from these lead extracts. All of these compounds exhibited pronounced specific binding values to the uPA target and showed tight intercalation with the crucial side chains forming the uPA active pocket, which may explain their mode of action. The activity validation substantiated their hemostatic effectivity in inhibiting uPA as they had better inhibition constant (Ki) values than the reference drug tranexamic acid. CONCLUSION: Collectively, the integrative strategy applied to these three species allowed the elucidation of the mechanisms underlying their therapeutic effects on bleeding disorders, resulting in the fast detection of four potential hemostatic compounds and their mode of action.


Assuntos
Acalypha , Euphorbia , Euphorbiaceae , Hemostáticos , Ativador de Plasminogênio Tipo Uroquinase/química , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Euphorbiaceae/química , Ultrafiltração , Cromatografia Líquida , Espectrometria de Massa com Cromatografia Líquida , Espectrometria de Massas em Tandem
9.
Phytochem Anal ; 35(2): 239-253, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37779216

RESUMO

INTRODUCTION: Scutellaria baicalensis Georgi, a traditional Chinese medicine, is widely applied to treat various diseases among people, especially in East Asia. However, the specific active compounds in S. baicalensis aqueous extracts (SBAEs) responsible for the hypoglycemic and hypolipidemic properties as well as their potential mechanisms of action remain unclear. OBJECTIVES: This work aimed to explore the potential hypoglycemic and hypolipidemic compounds from SBAE and their potential mechanisms of action. METHODOLOGY: The in vitro inhibitory tests against lipase and α-glucosidase, and the effects of SBAE on glucose consumption and total triglyceride content in HepG2 cells were first performed to evaluate the hypoglycemic and hypolipidemic effects. Then, affinity ultrafiltration liquid chromatography-mass spectrometry (LC-MS) screening strategy with five drug targets, including α-glucosidase, α-amylase, protein tyrosine phosphatase 1B (PTP1B), lipase and 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) was developed to screen out the potential active constituents from SBAE, and some representative active compounds were further validated. RESULTS: SBAE displayed noteworthy hypoglycemic and hypolipidemic properties, and 4, 10, 4, 8, and 8 potential bioactive components against α-amylase, α-glucosidase, PTP1B, HMGCR, and lipase were initially screened out, respectively. The interaction network was thus constructed between the potential bioactive compounds screened out and their corresponding drug targets. Among them, baicalein, wogonin, and wogonoside were revealed to possess remarkable hypoglycemic and hypolipidemic effects. CONCLUSION: The potential hypolipidemic and hypoglycemic bioactive compounds in SBAE and their mode of action were initially explored through ligand-target interactions by combining affinity ultrafiltration LC-MS strategy with five drug targets.


Assuntos
Scutellaria baicalensis , Ultrafiltração , Humanos , alfa-Glucosidases , Hipoglicemiantes/farmacologia , Lipase , alfa-Amilases
10.
J Ethnopharmacol ; 319(Pt 3): 117276, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37866464

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Natural products, particularly medicinal plants, have been utilized in traditional medicine for millennia to treat various diseases. The genus Balanophora (Balanophoraceae) consists of 23 accepted species. These species are the most controversial flowering plants, with highly reduced morphologies and are found parasitizing on the roots of their host. They have been used in traditional medicine as a remedy for stomach pain, detumescence, uterine prolapse, wounds, syphilis, gonorrhea, treating injuries from falls, and other conditions. However, there is no review of this genus on its traditional uses, phytochemistry, and pharmacology. AIM: The present narrative review discusses the scientific data supporting the traditional uses of Balanophora species. The available information on its botanical properties, traditional uses, chemical contents, pharmacological activities, and toxicity was summarized to help comprehend current research and offer a foundation for future research. MATERIALS AND METHODS: The materials used in combining data on the genus Balanophora comprises online sources such as Web of Science, Google Scholar, Science Direct, and Chinese National Knowledge Infrastructure (CNKI) for Chinese-related materials. World Flora online was used in validating the scientific names of this genus while ChemBio Draw Ultra Version 22.2 software was employed in drawing the phytochemical compounds. RESULTS: Nine Balanophora species including B. harlandii, B. japonica, B. polyandra, B. fungosa, B. fungosa subsp. indica, B. laxiflora, B. abbreviata, B. tobiracola, and B. involucrata have been documented as vital sources of traditional medicines in different parts of Asia. A total of 159 secondary metabolites have been isolated and identified from the ten species of this genus comprising tannins, flavonoids, sterols, lignans, chalcones, terpenes, and phenylpropanoids. Among these compounds, tannins, lignans, terpenoids, chalcones and phenolic acids contribute to the pharmacological activities of the species in this genus with several biological activities both in vitro and in vivo such as anti-inflammatory, anti-oxidant, hypoglycemic activity, cytotoxicity, anti-microbial, melanin synthesis etc. CONCLUSION: This review summarizes the available literature on the traditional uses, pharmacological properties, and phytoconstituents of Balanophora species indicating that they contain fascinating chemical compounds with diverse biological activities. The traditional uses of the species in this genus have been confirmed by scientific data such as antimicrobial, hemostatic effect, gastroprotective activity and others. However, many species in this genus are yet unknown in terms of their botanical uses, chemical composition and biological activities. Thus, more research into the scientific connections between traditional medicinal uses and pharmacological activities, mode of action of the isolated bioactive constituents, and toxicity of other Balanophora species is needed to determine their efficacy and therapeutic potential for safe clinical application.


Assuntos
Balanophoraceae , Chalconas , Lignanas , Medicina Tradicional , Taninos
11.
Front Pharmacol ; 14: 1298049, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027025

RESUMO

Rodgersia podophylla A. Gray (R. podophylla) is a traditional Chinese medicine with various pharmacological effects. However, its antioxidant and anti-hyperuricemia components and mechanisms of action have not been explored yet. In this study, we first assessed the antioxidant potential of R. podophylla with 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and ferric ion reducing antioxidant power (FRAP) assays. The results suggested that the ethyl acetate (EA) fraction of R. podophylla not only exhibited the strongest DPPH, ABTS radical scavenging and ferric-reducing activities, but also possessed the highest total phenolic and total flavonoid contents among the five fractions. After that, the potential superoxide dismutase (SOD) and xanthine oxidase (XOD) ligands from the EA fraction were quickly screened and identified through the bio-affinity ultrafiltration liquid chromatography-mass spectrometry (UF-LC-MS). Accordingly, norbergenin, catechin, procyanidin B2, 4-O-galloylbergenin, 11-O-galloylbergenin, and gallic acid were considered to be potential SOD ligands, while gallic acid, 11-O-galloylbergenin, catechin, bergenin, and procyanidin B2 were recognized as potential XOD ligands, respectively. Moreover, these six ligands effectively interacted with SOD in molecular docking simulation, with binding energies (BEs) ranging from -6.85 to -4.67 kcal/mol, and the inhibition constants (Ki) from 9.51 to 379.44 µM, which were better than the positive controls. Particularly, catechin exhibited a robust binding affinity towards XOD, with a BE value of -8.54 kcal/mol and Ki value of 0.55 µM, which surpassed the positive controls. In conclusion, our study revealed that R. podophylla possessed remarkable antioxidant and anti-hyperuricemia activities and that the UF-LC-MS method is suitable for screening potential ligands for SOD and XOD from medicinal plants.

12.
Front Plant Sci ; 14: 1179510, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396648

RESUMO

Sambucus L. is found in the family Viburnaceae (syn. Adoxaceae) and encompasses approximately 29 accepted species. The complex morphology of these species has caused continued confusion concerning their nomenclature, classification, and identification. Despite previous attempts to resolve taxonomic complexities in the Sambucus genus, there are still unclear phylogenetic relationships among several species. In this study, the newly obtained plastome of Sambucus williamsii Hance. as well as the populations of Sambucus canadensis L., Sambucus javanica Blume, and Sambucus adnata Wall. ex DC were sequenced, and their sizes, structural similarity, gene order, gene number, and guanine-cytosine (GC) contents were analyzed. The phylogenetic analyses were conducted using the whole chloroplast genomes and protein-coding genes (PCGs). The findings revealed that the chloroplast genomes of Sambucus species exhibited typical quadripartite double-stranded DNA molecules. Their lengths ranged from 158,012 base pairs (bp) (S. javanica) to 158,716 bp (S. canadensis L). Each genome comprised a pair of inverted repeats (IRs), which separated the large single-copy (LSC) and small single-copy (SSC) regions. In addition, the plastomes contained 132 genes, encompassing 87 protein-coding, 37 tRNA, and four rRNA genes. In the simple sequence repeat (SSR) analysis, A/T mononucleotides had the highest proportion, with the most repetitive sequences observed in S. williamsii. The comparative genome analyses showed high similarities in structure, order, and gene contents. The hypervariable regions in the studied chloroplast genomes were trnT-GGU, trnF-GAA, psaJ, trnL-UAG, ndhF, and ndhE, which may be used as candidate barcodes for species discrimination in Sambucus genus. Phylogenetic analyses supported the monophyly of Sambucus and revealed the separation of S. javanica and S. adnata populations. Sambucus chinensis Lindl. was nested within S. javanica in the same clade, collaborating their conspecific treatment. These outcomes indicate that the chloroplast genome of Sambucus plants is a valuable genetic resource for resolving taxonomic discrepancies at the lower taxonomic levels and can be applied in molecular evolutionary studies.

13.
BMC Ecol Evol ; 23(1): 34, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37464315

RESUMO

BACKGROUND: To date, plastid genomes have been published for all but two holoparasitic angiosperm families. However, only a single or a few plastomes represent most of these families. Of the approximately 40 genera of holoparasitic angiosperms, a complete plastid genome sequence is available for only about half. In addition, less than 15 species are currently represented with more than one published plastid genome, most of which belong to the Orobanchaceae. Therefore, a significant portion of the holoparasitic plant plastome diversity remains unexplored. This limited information could hinder potential evolutionary pattern recognition as well as the exploration of inter- and intra-species plastid genome diversity in the most extreme holoparasitic angiosperms. RESULTS: Here, we report the first plastomes of Kenyan Hydnora abyssinica accessions. The plastomes have a typical quadripartite structure and encode 24 unique genes. Phylogenetic tree reconstruction recovers the Kenyan accessions as monophyletic and together in a clade with the Namibian H. abyssinica accession and the recently published H. arabica from Oman. Hydnora abyssinica as a whole however is recovered as non-monophyletic, with H. arabica nested within. This result is supported by distinct structural plastome synapomorphies as well as pairwise distance estimates that reveal hidden diversity within the Hydnora species in Africa. CONCLUSION: We propose to increase efforts to sample widespread holoparasitic species for their plastid genomes, as is the case with H. abyssinica, which is widely distributed in Africa. Morphological reinvestigation and further molecular data are needed to fully investigate the diversity of H. abyssinica along the entire range of distribution, as well as the diversity of currently synonymized taxa.


Assuntos
Evolução Biológica , Genomas de Plastídeos , Humanos , Filogenia , Quênia , Plantas
14.
Heliyon ; 9(6): e17405, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37416643

RESUMO

Globally, endemic species and natural habitats have been significantly impacted by climate change, and further considerable impacts are predicted. Therefore, understanding how endemic species are impacted by climate change can aid in advancing the necessary conservation initiatives. The use of niche modeling is becoming a popular topic in biological conservation to forecast changes in species distributions under various climate change scenarios. This study used the Australian Community Climate and Earth System Simulator version 1 (ACCESS-CM2) general circulation model of coupled model intercomparison project phase 6 (CMIP6) to model the current distribution of suitable habitat for the four threatened Annonaceae species endemic to East Africa (EA), to determine the impact of climate change on their suitable habitat in the years 2050 (average for 2041-2060) and 2070 (average for 2061-2080). Two shared socio-economic pathways (SSPs) SSP370 and SSP585 were used to project the contraction and expansion of suitable habitats for Uvariodendron kirkii, Uvaria kirkii, Uvariodendron dzomboense and Asteranthe asterias endemic to Kenya and Tanzania in EA. The current distribution for all four species is highly influenced by precipitation, temperature, and environmental factors (population, potential evapotranspiration, and aridity index). Although the loss of the original suitable habitat is anticipated to be significant, appropriate habitat expansion and contraction are projections for all species. More than 70% and 40% of the original habitats of Uvariodendron dzombense and Uvariodendron kirkii are predicted to be destroyed by climate change, respectively. Based on our research, we suggest that areas that are expected to shrink owing to climate change be classified as important protection zones for the preservation of Annonaceae species.

15.
PhytoKeys ; 219: 11-25, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252452

RESUMO

Cynanchumthesioides, a species widely distributed in north-eastern Asia, is revised to include two new synonyms: Vincetoxicumsibiricumf.linearifolium, described from Shandong, China in 1877, but long neglected and Cynanchumgobicum, previously believed to be endemic to Mongolia. Typification for C.thesioides and all its synonyms is given, including lectotypification of V.sibiricumvar.australe and V.sibiricumf.linearifolium. An updated description, three figures showing the diverse habitats, habits and variation in morphological characters, and a general distribution map are also provided.

16.
Sci Rep ; 13(1): 7237, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142659

RESUMO

Polygonatum Miller belongs to the tribe Polygonateae of Asparagaceae. The horizontal creeping fleshy roots of several species in this genus serve as traditional Chinese medicine. Previous studies have mainly reported the size and gene contents of the plastomes, with little information on the comparative analysis of the plastid genomes of this genus. Additionally, there are still some species whose chloroplast genome information has not been reported. In this study, the complete plastomes of six Polygonatum were sequenced and assembled, among them, the chloroplast genome of P. campanulatum was reported for the first time. Comparative and phylogenetic analyses were then conducted with the published plastomes of three related species. Results indicated that the whole plastome length of the Polygonatum species ranged from 154,564 bp (P. multiflorum) to 156,028 bp (P. stenophyllum) having a quadripartite structure of LSC and SSC separated by two IR regions. A total of 113 unique genes were detected in each of the species. Comparative analysis revealed that gene content and total GC content in these species were highly identical. No significant contraction or expansion was observed in the IR boundaries among all the species except P. sibiricum1, in which the rps19 gene was pseudogenized owing to incomplete duplication. Abundant long dispersed repeats and SSRs were detected in each genome. There were five remarkably variable regions and 14 positively selected genes were identified among Polygonatum and Heteropolygonatum. Phylogenetic results based on chloroplast genome strongly supported the placement of P. campanulatum with alternate leaves in sect. Verticillata, a group characterized by whorled leaves. Moreover, P. verticillatum and P. cyrtonema were displayed as paraphyletic. This study revealed that the characters of plastomes in Polygonatum and Heteropolygonatum maintained a high degree of similarity. Five highly variable regions were found to be potential specific DNA barcodes in Polygonatum. Phylogenetic results suggested that leaf arrangement was not suitable as a basis for delimitation of subgeneric groups in Polygonatum and the definitions of P. cyrtonema and P. verticillatum require further study.


Assuntos
Asparagaceae , Genoma de Cloroplastos , Genomas de Plastídeos , Polygonatum , Filogenia , Genoma de Cloroplastos/genética , Polygonatum/genética , Asparagaceae/genética
17.
PhytoKeys ; 223: 1-174, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252062

RESUMO

Mt Elgon is an ancient transboundary volcanic mountain found at the Kenya-Uganda boarder possessing high plant diversity. This study documents an updated checklist of the mountain's vascular plants obtained through random-walk field excursions and retrieval of herbarium specimen tracing back to 1900. We compiled 1709 species from 673 genera in 131 families. One new species of the family Cucurbitaceae was also reported. This checklist records respective habitat, habits, elevation ranges, voucher numbers and global distribution ranges of each species. Native and exotic species were also distinguished, where 8.4% of the total species in 49 families were exotic species. There were 103 endemic species, while 14 species were found to be both rare and endemic. IUCN conservation status revealed 2 Critically Endangered, 4 Endangered, 9 Vulnerable and 2 Near Threatened species. This study presents the first and most comprehensive plant inventory of Mt Elgon that will facilitate further ecological and phylogenetic studies.

18.
Plants (Basel) ; 12(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36987024

RESUMO

Tropical East Africa (TEA) is one of the most important biodiversity hotspots on the planet. Its rich flora diversity and inventory have been clearly recognized after the publication of the last volume of the Flora of Tropical East Africa (FTEA) in 2012. However, many new and newly recorded taxa have been named and documented since the publication of the first volume of FTEA in 1952. In this study, we comprehensively compiled new taxa and new records by reviewing the literature on the taxonomic contributions of vascular plants in TEA from 1952 to 2022. Our list includes 444 new and newly recorded species belonging to 81 families and 218 genera. Among these taxa, 94.59% of the plants are endemic to TEA and 48.42% are herbs. Additionally, members of Rubiaceae and Aloe are the most numerous family and genus respectively. These new taxa are unevenly distributed in TEA, but are found mainly in areas of high species richness, such as coastal, central and western areas of Kenya, central and southeastern Tanzania. This study offers summative assessment of the newly recorded flora inventory in TEA and provides recommendations for future research on plant diversity survey and conservation.

19.
Plants (Basel) ; 12(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36904005

RESUMO

Globally, food and medicinal plants have been documented, but their use patterns are poorly understood. Useful plants are non-random subsets of flora, prioritizing certain taxa. This study evaluates orders and families prioritized for medicine and food in Kenya, using three statistical models: Regression, Binomial, and Bayesian approaches. An extensive literature search was conducted to gather information on indigenous flora, medicinal and food plants. Regression residuals, obtained using LlNEST linear regression function, were used to quantify if taxa had unexpectedly high number of useful species relative to the overall proportion in the flora. Bayesian analysis, performed using BETA.INV function, was used to obtain superior and inferior 95% probability credible intervals for the whole flora and for all taxa. To test for the significance of individual taxa departure from the expected number, binomial analysis using BINOMDIST function was performed to obtain p-values for all taxa. The three models identified 14 positive outlier medicinal orders, all with significant values (p < 0.05). Fabales had the highest (66.16) regression residuals, while Sapindales had the highest (1.1605) R-value. Thirty-eight positive outlier medicinal families were identified; 34 were significant outliers (p < 0.05). Rutaceae (1.6808) had the highest R-value, while Fabaceae had the highest regression residuals (63.2). Sixteen positive outlier food orders were recovered; 13 were significant outliers (p < 0.05). Gentianales (45.27) had the highest regression residuals, while Sapindales (2.3654) had the highest R-value. Forty-two positive outlier food families were recovered by the three models; 30 were significant outliers (p < 0.05). Anacardiaceae (5.163) had the highest R-value, while Fabaceae had the highest (28.72) regression residuals. This study presents important medicinal and food taxa in Kenya, and adds useful data for global comparisons.

20.
Bot Stud ; 64(1): 3, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36720741

RESUMO

BACKGROUND: The genus Veronicastrum Heist. ex Fabr. are mainly distributed in East Asia, and only Veronicastrum virginicum (L.) Farw. is disjunctively distributed in eastern North America. The south area of China (extending to Taiwan Island) is the richest in Veronicastrum species. It is of medicinal importance in China as traditional herbs used to treat ascites diseases that caused by schistosomiasis. During field investigation of plant resources in Pingbaying National Forest Park, Southwestern Hubei, China, an unknown flowering population of Veronicastrum was discovered from thick humus layers adjacent to rocks under broad-leaved forests by walkways. They were collected and morphological characters assesed for further taxonomic treatment. Molecular analysis was also conducted to ascertain its phylogenetic position in the genus Veronicastrum. RESULTS: This species is similar to Veronicastrum liukiuense (Ohwi) T.Yamaz. from the Ryukyu Islands, but can be distinctly differed by its axillary inflorescences (versus terminal on short leafy branches), pedicels up to 2.5 mm (versus sessile), corollas purple to purple-red (versus white tinged with pale purple) and florescence June to July (versus September to October). Also, phylogenetic studies showed the species was an independent clade in the genus Veronicastrum based on the maximum likelihood (ML) analyses using two different matrix sequences of concatenated molecular markers. The plastid genome of this new species is also reported in this study for the first time. CONCLUSION: The morphological and molecular evidences support the recognition of Veronicastrum wulingense as a new species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...