Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(14): 3828-3834, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38557063

RESUMO

Ultrawide bandgap semiconductor ß-Ga2O3 (4.9 eV), with its monoclinic crystal structure, exhibits distinct anisotropic characteristics both optically and electrically, making it an ideal material for solar-blind polarization photodetectors. In this work, ß-Ga2O3 epitaxial films were deposited on sapphire substrates with different orientations, and the mechanisms underlying the anisotropy of these epitaxial films were investigated. Compared to c-plane sapphire, the lattice mismatch between m- or r-plane sapphire and ß-Ga2O3 is more pronounced, disrupting the rotational symmetry of the films and rendering them anisotropic. Thanks to the improved anisotropy, the polarization ratio of the photodetector based on ß-Ga2O3 films grown on r-plane substrates is 0.24, nearly ten times higher than that on c-plane substrates. Finally, by utilizing these polarization-sensitive photodetectors, we developed an encrypted solar-blind ultraviolet optical communication system. Our work provides a new approach to facilitate the fabrication and application of high-performance polarization-sensitive solar-blind photodetectors.

2.
J Phys Chem Lett ; 14(28): 6444-6450, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37433104

RESUMO

Previous research has shown that the hybridization of N 2p and O 2p orbitals effectively suppresses the electrical activity of oxygen vacancies in oxide semiconductors. However, achieving N-alloyed Ga2O3 films, known as GaON, poses a significant challenge due to nitrogen's limited solubility in the material. In this study, a new method utilizing plasma-enhanced chemical vapor deposition with high-energy nitrogen plasma was explored to enhance the nitrogen solubility in the material. By adjusting the N2 and O2 carrier gas ratio, we could tune the thin film's bandgap from 4.64 to 3.25 eV, leading to a reduction in the oxygen vacancy density from 32.89% to 19.87%. GaON-based photodetectors exhibited superior performance compared to that of Ga2O3-based devices, with a lower dark current and a faster photoresponse speed. This investigation presents an innovative approach to achieving high-performance devices based on Ga2O3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...