Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(24): e202218768, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-36890113

RESUMO

Conventional photocages only respond to short wavelength light, which is a significant obstacle to developing efficient phototherapy in vivo. The development of photocages activated by near-infrared (NIR) light at wavelengths from 700 to 950 nm is important for in vivo studies but remains challenging. Herein, we describe the synthesis of a photocage based on a ruthenium (Ru) complex with NIR light-triggered photocleavage reaction. The commercial anticancer drug, tetrahydrocurcumin (THC), was coordinated to the RuII center to create the Ru-based photocage that is readily responsive to NIR light at 760 nm. The photocage inherited the anticancer properties of THC. As a proof-of-concept, we further engineered a self-assembled photocage-based nanoparticle system with amphiphilic block copolymers. Upon exposure to NIR light at 760 nm, the Ru complex-based photocages were released from the polymeric nanoparticles and efficiently inhibited tumor proliferation in vivo.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Rutênio , Humanos , Fototerapia , Neoplasias/tratamento farmacológico , Polímeros/uso terapêutico , Nanopartículas/uso terapêutico
2.
Artigo em Inglês | MEDLINE | ID: mdl-35649246

RESUMO

Chronic diabetic wound healing remains a challenge due to the existence of excessive danger molecules and bacteria in the inflammatory microenvironment. There is an urgent need for advanced wound dressings that target both inflammation and infection. Here, a bioactive hydrogel without loading any anti-inflammatory ingredients is rationally designed to achieve a "Pull-Push" approach for efficient and safe bacteria-infected diabetic wound healing by integrating danger molecule scavenging (Pull) with antibiotic delivery (Push) in the inflammatory microenvironment. The cationic hydrogel, termed the OCMC-Tob/PEI hydrogel, is fabricated by the conjugation of polyethylenimine (PEI) and tobramycin (Tob) on an oxidized carboxymethyl cellulose (OCMC) backbone via the Schiff base reaction with injectable, self-healing, and biocompatible properties. The OCMC-Tob/PEI hydrogel not only displays the remarkable capability of capturing multiple negatively charged danger molecules (e.g., cell-free DNA, lipopolysaccharides, and tumor necrosis factor-α) to ameliorate anti-inflammation effects but also achieves controllable long-term antibacterial activity by the pH-sensitive release of Tob. Consequently, this multifunctional hydrogel greatly expedites the wound closure rate with combined anti-inflammation and anti-infection effects on Pseudomonas aeruginosa-infected diabetic wounds. Our work provides a highly versatile treatment approach for chronic diabetic wounds and a promising dressing for regenerative medicine.

3.
Nat Rev Mater ; 7(7): 557-574, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251702

RESUMO

Inflammation plays an important role in the response to danger signals arising from damage to our body and in restoring homeostasis. Dysregulated inflammatory responses occur in many diseases, including cancer, sepsis and autoimmunity. The efficacy of anti-inflammatory drugs, developed for the treatment of dysregulated inflammation, can be potentiated using biomaterials, by improving the bioavailability of drugs and by reducing side effects. In this Review, we first outline key elements and stages of the inflammatory environment and then discuss the design of biomaterials for different anti-inflammatory therapeutic strategies. Biomaterials can be engineered to scavenge danger signals, such as reactive oxygen and nitrogen species and cell-free DNA, in the early stages of inflammation. Materials can also be designed to prevent adhesive interactions of leukocytes and endothelial cells that initiate inflammatory responses. Furthermore, nanoscale platforms can deliver anti-inflammatory agents to inflammation sites. We conclude by discussing the challenges and opportunities for biomaterial innovations in addressing inflammation.

5.
Chem Rec ; 22(4): e202100287, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35020240

RESUMO

The integration of silver nanoparticles (Ag NPs) with mesoporous silica nanoparticles (MSNs) protects the former from aggregation and promotes the controlled release of silver ions, resulting in therapeutic significance on cancer and infection. The unique size, shape, pore structure and silver distribution of silver mesoporous silica nanoparticles (Ag-MSNs) embellish them with the potential to perform combined imaging and therapeutic actions via modulating optical and drug release properties. Here, we comprehensively review the recent progress in the fabrication and application of Ag-MSNs for combination therapies for cancer and infection. We first elaborate on the fabrication of star-shaped structure, core-shell structure, and Janus structure Ag-MSNs. We then highlight Ag-MSNs as a multifunctional nanoplatform to surface-enhanced Raman scattering-based detection, non-photo-based cancer theranostics and photo-based cancer theranostics. In addition, we detail Ag-MSNs for combined antibacterial therapy via drug delivery and phototherapy. Overall, we summarize the challenges and future perspectives of Ag-MSNs that make them promising for diagnosis and therapy of cancer and infection.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Dióxido de Silício/química , Prata/química
6.
Sci Adv ; 8(4): eabj2372, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35089791

RESUMO

A therapeutic strategy that targets multiple proinflammatory factors in inflammatory bowel disease (IBD) with minimal systemic side effects would be attractive. Here, we develop a drug-free, biodegradable nanomedicine that acts against IBD by scavenging proinflammatory cell-free DNA (cfDNA) and reactive oxygen species (ROS). Polyethylenimine (PEI) was conjugated to antioxidative diselenide-bridged mesoporous organosilica nanoparticles (MONs) to formulate nanoparticles (MON-PEI) that exhibited high cfDNA binding affinity and ROS-responsive degradation. In ulcerative colitis and Crohn's disease mouse colitis models, orally administered MON-PEI accumulated preferentially in the inflamed colon and attenuated colonic and peritoneal inflammation by alleviating cfDNA- and ROS-mediated inflammatory responses, allowing a reduced dose frequency and ameliorating colitis even after delayed treatment. This work suggests a new nanomedicine strategy for IBD treatment.


Assuntos
Ácidos Nucleicos Livres , Colite , Doenças Inflamatórias Intestinais , Animais , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Camundongos , Polietilenoimina/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo
7.
Small Methods ; 5(5): e2001191, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34928094

RESUMO

Although adoptive transfer of therapeutic cells to cancer patients is demonstrated with great success and fortunately approved for the treatment of leukemia and B-cell lymphoma, potential issues, including the unclear mechanism, complicated procedures, unfavorable therapeutic efficacy for solid tumors, and side effects, still hinder its extensive applications. The explosion of nanotechnology recently has led to advanced development of novel strategies to address these challenges, facilitating the design of nano-therapeutics to improve adoptive cell therapy (ACT) for cancer treatment. In this review, the emerging nano-enabled approaches, that design multiscale artificial antigen-presenting cells for cell proliferation and stimulation in vitro, promote the transducing efficiency of tumor-targeting domains, engineer therapeutic cells for in vivo imaging, tumor infiltration, and in vivo functional sustainability, as well as generate tumoricidal T cells in vivo, are summarized. Meanwhile, the current challenges and future perspectives of the nanostrategy-based ACT for cancer treatment are also discussed in the end.


Assuntos
Imunoterapia Adotiva/métodos , Nanopartículas/química , Neoplasias/terapia , Animais , Antígenos/química , Antígenos/imunologia , Humanos , Lipídeos/química , Magnetismo , Nanopartículas/toxicidade , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo
8.
Mater Today (Kidlington) ; 42: 99-116, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421329

RESUMO

Advances in nanoformulation have driven progress in biomedicine by producing nanoscale tools for biosensing, imaging, and drug delivery. Flash-based technology, the combination of rapid mixing technique with the self-assembly of macromolecules, is a new engine for the translational nanomedicine. Here, we review the state-of-the-art in flash-based self-assembly including theoretical and experimental principles, mixing device design, and applications. We highlight the fields of flash nanocomplexation (FNC) and flash nanoprecipitation (FNP), with an emphasis on biomedical applications of FNC, and discuss challenges and future directions for flash-based nanoformulation in biomedicine.

9.
Adv Sci (Weinh) ; 8(15): 2002020, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34386315

RESUMO

Biomimetic strategies are useful for designing potent vaccines. Decorating a nanoparticulate adjuvant with cell membrane fragments as the antigen-presenting source exemplifies, such as a promising strategy. For translation, a standardizable, consistent, and scalable approach for coating nanoadjuvant with the cell membrane is important. Here a turbulent mixing and self-assembly method called flash nanocomplexation (FNC) for producing cell membrane-coated nanovaccines in a scalable manner is demonstrated. The broad applicability of this FNC technique compared with bulk-sonication by using ten different core materials and multiple cell membrane types is shown. FNC-produced biomimetic nanoparticles have promising colloidal stability and narrow particle polydispersity, indicating an equal or more homogeneous coating compared to the bulk-sonication method. The potency of a nanovaccine comprised of B16-F10 cancer cell membrane decorating mesoporous silica nanoparticles loaded with the adjuvant CpG is then demonstrated. The FNC-fabricated nanovaccines when combined with anti-CTLA-4 show potency in lymph node targeting, DC antigen presentation, and T cell immune activation, leading to prophylactic and therapeutic efficacy in a melanoma mouse model. This study advances the design of a biomimetic nanovaccine enabled by a robust and versatile nanomanufacturing technique.


Assuntos
Antígeno CTLA-4/imunologia , Vacinas Anticâncer/uso terapêutico , Melanoma Experimental/prevenção & controle , Nanopartículas/uso terapêutico , Adjuvantes Imunológicos/uso terapêutico , Animais , Apresentação de Antígeno/efeitos dos fármacos , Biomimética , Antígeno CTLA-4/antagonistas & inibidores , Vacinas Anticâncer/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Humanos , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Melanoma Experimental/imunologia , Camundongos , Linfócitos T/imunologia
10.
Small ; 17(26): e2100006, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34081391

RESUMO

Amplifying the chemotherapy-driven immunogenic cell death (ICD) for efficient and safe cancer chemoimmunotherapy remains a challenge. Here, a potential ICD nanoamplifier containing diselenide-bridged mesoporous organosilica nanoparticles (MONs) and chemotherapeutic ruthenium compound (KP1339) to achieve cancer chemoimmunotherapy is tailored. KP1339-loaded MONs show controlled drug release profiles via glutathione (GSH)-responsive competitive coordination and matrix degradation. High concentration of MONs selectively evoked reactive oxygen species production, GSH depletion, and endoplasmic reticulum stress in cancer cells, thus amplifying the ICD of KP1339 and boosting robust antitumor immunological responses. After the combination of PD-L1 checkpoint blockade, cancer cell membrane-cloaked KP1339-loaded MONs not only regress primary tumor growth with low systemic toxicity, but also inhibit distant tumor growth and pulmonary metastasis of breast cancer. The results have shown the potential of coordination and redox dual-responsive MONs boosting amplified ICD for cancer chemoimmunotherapy.


Assuntos
Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Doxorrubicina , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Humanos , Morte Celular Imunogênica , Neoplasias/tratamento farmacológico , Oxirredução
11.
Biomaterials ; 271: 120716, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33621894

RESUMO

Chemotherapy is a major approach for treating breast cancer patients. Paradoxically, it can also induce cancer progression. Understanding post-chemotherapy metastasis mechanism will help the development of new therapeutic strategies to ameliorate chemotherapy-induced cancer progression. In this study, we deciphered the role of HMGB1 in the regulation of TLR4-mediated epithelial to mesenchymal transitions (EMT) process on doxorubicin (Dox)-treated 4T1 breast cancer cells. Berberine (Ber), a clinically approved alkaloid has been demonstrated as an HMGB1-TLR4 axis regulator to Dox-exacerbated breast cancer metastasis in vitro and in vivo. Hypothesizing that combination of Dox and Ber would be beneficial for breast cancer chemotherapy, we engineered self-assembled nanodrug (DBNP) consisting of Dox and Ber without the aid of additional carriers. After cloaking with 4T1 cell membranes, DBNP@CM exhibited higher accumulation at tumor sites and prolonged blood circulation time in 4T1 orthotopic tumor-bearing mice than DBNP. Importantly, DBNP@CM not only effectively inhibited tumor growth with fewer side effects, but also remarkably suppressed pulmonary metastasis via blocking HMGB1-TLR4 axis. Together, our results have provided a promising combination strategy to dampen chemotherapy-exacerbated breast cancer metastasis and shed light on the development of biomimetic nanodrug for efficient and safe breast cancer chemotherapy.


Assuntos
Berberina , Neoplasias da Mama , Neoplasias Pulmonares , Nanopartículas , Animais , Biomimética , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Doxorrubicina , Humanos , Camundongos , Camundongos Endogâmicos BALB C
12.
J Mater Chem B ; 9(1): 94-100, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33220661

RESUMO

The clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 (CRISPR/Cas9) technology enables genome editing with high precision and versatility and has been widely utilized to combat viruses, bacteria, cancers, and genetic diseases. Nonviral nanocarriers can overcome several limitations of viral vehicles, including immunogenicity, inflammation, carcinogenicity, and low versatility, and thus represent promising platforms for CRISPR/Cas9 delivery. Herein, we for the first time develop the application of protamine-capped gold nanoclusters (protamine-AuNCs) as an effective nanocarrier for Cas9-sgRNA plasmid transport and release to achieve efficient genome editing. The protamine-AuNCs integrate the merits of AuNCs and protamine: AuNCs are able to promptly assemble with Cas9-sgRNA plasmids to allow efficient cellular delivery, while the cationic protamine facilitates the effective release of Cas9-sgRNA plasmids into the cellular nucleus. The AuNCs/Cas9-gRNA plasmid nanocomplexes can not only achieve successful gene editing in cells but also knock out the oncogenic gene for cancer therapy. Moreover, the AuNCs with excellent photoluminescence characteristics endow our nanoplatform with the functionality of bioimaging. Overall, our study provides strong evidence that demonstrates protamine-AuNCs as an effective CRISPR/Cas9 delivery tool for gene therapy.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/fisiologia , Núcleo Celular/metabolismo , Edição de Genes/métodos , Ouro/metabolismo , Nanopartículas Metálicas , Proteína 9 Associada à CRISPR/administração & dosagem , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Ouro/administração & dosagem , Humanos , Nanopartículas Metálicas/administração & dosagem
13.
J Mater Chem B ; 9(1): 23-34, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33179709

RESUMO

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic and painful bladder condition afflicting patients with increased urinary urgency and frequency as well as incontinence. Owing to the elusive pathogenesis of IC/BPS, obtaining effective therapeutic outcomes remains challenging. Current administrational routes such as intravesical-bladder injection improve the treatment efficacy and reduce systemic side effects. However, the bladder permeability barrier hinders drug penetration into the bladder wall to meet the desired therapeutic expectation. These issues can be addressed by encapsulating drugs into biomaterials. When appropriately exploited, they would increase the drug dwelling time in the bladder, enhance the penetration of mucosa and improve the therapeutic response of IC/BPS. In this review, we first elucidate the pathogenesis and animal models of IC/BPS. Then, we highlight recent representative biomaterial-assisted drug delivery systems for IC/BPS treatment. Finally, we discuss the challenges and outlook for further developing biomaterial-based delivery systems for IC/BPS management.


Assuntos
Materiais Biocompatíveis/administração & dosagem , Cistite Intersticial/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Urotélio/efeitos dos fármacos , Animais , Autoimunidade/efeitos dos fármacos , Autoimunidade/fisiologia , Materiais Biocompatíveis/metabolismo , Cistite Intersticial/metabolismo , Cistite Intersticial/patologia , Humanos , Resultado do Tratamento , Urotélio/metabolismo , Urotélio/patologia
14.
Adv Mater ; 32(50): e2004385, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33164250

RESUMO

Chemotherapy causes off-target toxicity and is often ineffective against solid tumors. Targeted and on-demand release of chemotherapeutics remains a challenge. Here, cancer-cell-membrane-coated mesoporous organosilica nanoparticles (MONs) containing X-ray- and reactive oxygen species (ROS)-responsive diselenide bonds for controlled release of doxorubicin (DOX) at tumor sites are developed. DOX-loaded MONs coated with 4T1 breast cancer cell membranes (CM@MON@DOX) show greater accumulation at tumor sites and prolonged blood circulation time versus an uncoated control in mice bearing 4T1 orthotopic mammary tumors. Under low-dose X-ray radiation, the DOX-loaded MONs exhibit carrier degradation-controlled release via cleavage of diselenide bonds, resulting in DOX-mediated immunogenic cell death at the tumor site. Combination with a PD-L1 checkpoint blockade further enhances inhibition of tumor growth and metastasis with low systemic toxicity. Together, the findings show the promise of these biomimetic, radiation-responsive diselenide-bond-bridged MONs in chemo-immunotherapy.


Assuntos
Materiais Biomiméticos/química , Portadores de Fármacos/química , Imunoterapia/métodos , Nanopartículas/química , Selênio/química , Dióxido de Silício/química , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/radioterapia , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/uso terapêutico , Humanos , Camundongos , Porosidade , Raios X
15.
Adv Mater ; 32(46): e2003537, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33053221

RESUMO

Recent advances in CRISPR present attractive genome-editing toolsets for therapeutic strategies at the genetic level. Here, a liposome-coated mesoporous silica nanoparticle (lipoMSN) is reported as an effective CRISPR delivery system for multiplex gene-editing in the liver. The MSN provides efficient loading of Cas9 plasmid as well as Cas9 protein/guide RNA ribonucleoprotein complex (RNP), while liposome-coating offers improved serum stability and enhanced cell uptake. Hypothesizing that loss-of-function mutation in the lipid-metabolism-related genes pcsk9, apoc3, and angptl3 would improve cardiovascular health by lowering blood cholesterol and triglycerides, the lipoMSN is used to deliver a combination of RNPs targeting these genes. When targeting a single gene, the lipoMSN achieved a 54% gene-editing efficiency, besting the state-of-art Lipofectamine CRISPRMax. For multiplexing, lipoMSN maintained significant gene-editing at each gene target despite reduced dosage of target-specific RNP. By delivering combinations of targeting RNPs in the same nanoparticle, synergistic effects on lipid metabolism are observed in vitro and vivo. These effects, such as a 50% decrease in serum cholesterol after 4 weeks of post-treatment with lipoMSN carrying both pcsk9 and angptl3-targeted RNPs, could not be reached with a single gene-editing approach. Taken together, this lipoMSN represents a versatile platform for the development of efficient, combinatorial gene-editing therapeutics.


Assuntos
Portadores de Fármacos/química , Edição de Genes , Fígado/metabolismo , Proteína 3 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina/genética , Sistemas CRISPR-Cas/genética , Técnicas de Transferência de Genes , Humanos , Lipídeos/química , Nanopartículas/química , Pró-Proteína Convertase 9/genética
16.
Sci Adv ; 6(22): eaay7148, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32523983

RESUMO

Severe sepsis represents a common, expensive, and deadly health care issue with limited therapeutic options. Gaining insights into the inflammatory dysregulation that causes sepsis would help develop new therapeutic strategies against severe sepsis. In this study, we identified the crucial role of cell-free DNA (cfDNA) in the regulation of the Toll-like receptor 9-mediated proinflammatory pathway in severe sepsis progression. Hypothesizing that removing cfDNA would be beneficial for sepsis treatment, we used polyethylenimine (PEI) and synthesized PEI-functionalized, biodegradable mesoporous silica nanoparticles with different charge densities as cfDNA scavengers. These nucleic acid-binding nanoparticles (NABNs) showed superior performance compared with their nucleic acid-binding polymer counterparts on inhibition of cfDNA-induced inflammation and subsequent multiple organ injury caused by severe sepsis. Furthermore, NABNs exhibited enhanced accumulation and retention in the inflamed cecum, along with a more desirable in vivo safety profile. Together, our results revealed a key contribution of cfDNA in severe sepsis and shed a light on the development of NABN-based therapeutics for sepsis therapy, which currently remains intractable.


Assuntos
Ácidos Nucleicos Livres , Nanopartículas , Sepse , DNA/uso terapêutico , Humanos , Polietilenoimina/uso terapêutico , Sepse/etiologia , Sepse/genética
17.
Nanomicro Lett ; 13(1): 25, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34138224

RESUMO

HIGHLIGHTS: This review focuses on the therapeutic mechanisms, targeting strategies of various nanomaterials in acute liver failure, and recent advances of diverse nanomaterials for acute liver failure therapy, diagnosis, and imaging. This review provides an outlook on the applications of nanomaterials, especially on the new horizons in acute liver failure therapy, and inspires broader interests across various disciplines. Acute liver failure (ALF), a fatal clinical disease featured with overwhelming hepatocyte necrosis, is a grand challenge in global health. However, a satisfactory therapeutic option for curing ALF is still absent, other than liver transplantation. Nanobiomaterials are currently being developed for the diagnosis and treatment of ALF. The liver can sequester most of nanoparticles from blood circulation, which becomes an intrinsic superiority for nanobiomaterials targeting hepatic diseases. Nanobiomaterials can enhance the bioavailability of free drugs, thereby significantly improving the therapeutic effects in ALF. Nanobiomaterials can also increase the liver accumulation of therapeutic agents and enable more effective targeting of the liver or specific liver cells. In addition, stimuli-responsive, optical, or magnetic nanomaterials exhibit great potential in the therapeutical, diagnostic, and imaging applications in ALF. Therefore, therapeutic agents in combination with nanobiomaterials increase the specificity of ALF therapy, diminish adverse systemic effects, and offer a multifunctional theranostic platform. Nanobiomaterial holds excellent significance and prospects in ALF theranostics. In this review, we summarize the therapeutic mechanisms and targeting strategies of various nanobiomaterials in ALF. We highlight recent developments of diverse nanomedicines for ALF therapy, diagnosis, and imaging. Furthermore, the challenges and future perspectives in the theranostics of ALF are also discussed.

18.
Adv Sci (Weinh) ; 6(22): 1901690, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31763151

RESUMO

Photodynamic therapy (PDT) is clinically promising in destructing primary tumors but ineffective against distant metastases. This study reports the use of immunogenic nanoparticles mediated combination of PDT and magnetic hyperthermia to synergistically augment the anti-metastatic efficacy of immunotherapy. Janus nanobullets integrating chlorine e6 (Ce6) loaded, disulfide-bridged mesoporous organosilica bodies with magnetic heads (M-MONs@Ce6) are tailored for redox/pH-triggered photosensitizer release accompanying their matrix degradation. Cancer cell membrane cloaking enables favorable tumor-targeted accumulation and prolonged blood circulation time of M-MONs@Ce6. The combination of PDT and magnetic hyperthermia has a strong synergy anticancer activity and simultaneously elicits a sequence of immunogenic cell death, resulting in synergistically tumor-specific immune responses. When combined with anti-CTLA-4 antibody, the biomimetic and biodegradable nanoparticle enables the notable eradication of primary and deeply metastatic tumors with low systematic toxicity, thus potentially advancing the development of combined hyperthermia, PDT, and checkpoint blockade immunotherapy to combat cancer metastasis.

19.
Adv Sci (Weinh) ; 6(15): 1900605, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31406672

RESUMO

Inflammation is ubiquitous in the body, triggering desirable immune response to defend against dangerous signals or instigating undesirable damage to cells and tissues to cause disease. Nanomedicine holds exciting potential in modulating inflammation. In particular, cell membranes derived from cells involved in the inflammatory process may be used to coat nanotherapeutics for effective targeted delivery to inflammatory tissues. Herein, the recent progress of rationally engineering cell membrane-based nanotherapeutics for inflammation therapy is highlighted, and the challenges and opportunities presented in realizing the full potential of cell-membrane coating in targeting and manipulating the inflammatory microenvironment are discussed.

20.
Nano Lett ; 19(3): 1701-1705, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30773888

RESUMO

Mesenchymal stem cell (MSC) has been increasingly applied to cancer therapy because of its tumor-tropic capability. However, short retention at target tissue and limited payload option hinder the progress of MSC-based cancer therapy. Herein, we proposed a hybrid spheroid/nanomedicine system, comprising MSC spheroid entrapping drug-loaded nanocomposite, to address these limitations. Spheroid formulation enhanced MSC's tumor tropism and facilitated loading of different types of therapeutic payloads. This system acted as an active drug delivery platform seeking and specifically targeting glioblastoma cells. It enabled effective delivery of combinational protein and chemotherapeutic drugs by engineered MSC and nanocomposite, respectively. In an in vivo migration model, the hybrid spheroid showed higher nanocomposite retention in the tumor tissue compared with the single MSC approach, leading to enhanced tumor inhibition in a heterotopic glioblastoma murine model. Taken together, this system integrates the merits of cell- and nanoparticle- mediated drug delivery with the tumor-homing characteristics of MSC to advance targeted combinational cancer therapy.


Assuntos
Sistemas de Liberação de Medicamentos , Glioblastoma/tratamento farmacológico , Células-Tronco Mesenquimais/química , Esferoides Celulares/transplante , Engenharia Celular/tendências , Movimento Celular/efeitos dos fármacos , Terapia Combinada , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Células-Tronco Mesenquimais/citologia , Nanomedicina/tendências , Esferoides Celulares/química , Tropismo Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...