Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(7): e2207368, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36698307

RESUMO

The cell migration cycle, well-established in 2D, proceeds with forming new protrusive structures at the cell membrane and subsequent redistribution of contractile machinery. Three-dimensional (3D) environments are complex and composed of 1D fibers, and 1D fibers are shown to recapitulate essential features of 3D migration. However, the establishment of protrusive activity at the cell membrane and contractility in 1D fibrous environments remains partially understood. Here the role of membrane curvature regulator IRSp53 is examined as a coupler between actin filaments and plasma membrane during cell migration on single, suspended 1D fibers. IRSp53 depletion reduced cell-length spanning actin stress fibers that originate from the cell periphery, protrusive activity, and contractility, leading to uncoupling of the nucleus from cellular movements. A theoretical model capable of predicting the observed transition of IRSp53-depleted cells from rapid stick-slip migration to smooth and slower migration due to reduced actin polymerization at the cell edges is developed, which is verified by direct measurements of retrograde actin flow using speckle microscopy. Overall, it is found that IRSp53 mediates actin recruitment at the cellular tips leading to the establishment of cell-length spanning fibers, thus demonstrating a unique role of IRSp53 in controlling cell migration in 3D.


Assuntos
Citoesqueleto de Actina , Actinas , Movimento Celular , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Membrana Celular/metabolismo , Movimento Celular/genética , Núcleo Celular/metabolismo , Pseudópodes/genética , Pseudópodes/metabolismo
2.
STAR Protoc ; 2(3): 100625, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34223199

RESUMO

Extracellular vesicles (EVs) play important roles in extracellular trafficking and signaling. Here, we separate EVs by differential centrifugation. EVs separated by this approach are called large EVs (l-EVs) and small EVs (s-EVs), reflecting particle size, which sediment based on different ultracentrifugation forces. The resulting EVs can be quantified and analyzed using nanoparticle tracking analysis, immunoblotting, and functional assays. This protocol was applied to a suspension cell line with high transfection efficiency adapted to a high-density, serum-free culture. For complete details on the use and execution of this protocol, please refer to Nishimura et al. (2021).


Assuntos
Vesículas Extracelulares/metabolismo , Ultracentrifugação/métodos , Western Blotting , Movimento Celular , Meios de Cultura Livres de Soro , Células HEK293 , Humanos , Proteínas/isolamento & purificação
3.
Dev Cell ; 56(6): 842-859.e8, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33756122

RESUMO

Extracellular vesicles (EVs) are classified as large EVs (l-EVs, or microvesicles) and small EVs (s-EVs, or exosomes). S-EVs are thought to be generated from endosomes through a process that mainly depends on the ESCRT protein complex, including ALG-2 interacting protein X (ALIX). However, the mechanisms of l-EV generation from the plasma membrane have not been identified. Membrane curvatures are generated by the bin-amphiphysin-rvs (BAR) family proteins, among which the inverse BAR (I-BAR) proteins are involved in filopodial protrusions. Here, we show that the I-BAR proteins, including missing in metastasis (MIM), generate l-EVs by scission of filopodia. Interestingly, MIM-containing l-EV production was promoted by in vivo equivalent external forces and by the suppression of ALIX, suggesting an alternative mechanism of vesicle formation to s-EVs. The MIM-dependent l-EVs contained lysophospholipids and proteins, including IRS4 and Rac1, which stimulated the migration of recipient cells through lamellipodia formation. Thus, these filopodia-dependent l-EVs, which we named as filopodia-derived vesicles (FDVs), modify cellular behavior.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Movimento Celular , Endocitose , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Pseudópodes/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ciclo Celular/genética , Membrana Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Células HEK293 , Humanos , Proteínas dos Microfilamentos/genética , Proteínas de Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...