Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5505, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448607

RESUMO

The high-frequency pulse flow, equivalent to the natural frequency of rocks, is generated by a self-excited oscillating cavity to achieve resonance rock-breaking. The flow field and oscillating mechanism of the self-excited oscillating cavity were simulated using the large eddy simulation method of Computational Fluid Dynamics (CFD). A field-scale testing apparatus was developed to investigate the impulse characteristics and verify the simulation results. The results show that the fluid at the outlet at the tool is deflected due to the pulse oscillation of the fluid. The size and shape of low-pressure vortices constantly change, leading to periodic changes in fluid impedance within the oscillating cavity. The impulse frequency reaches its highest point when the length-diameter ratio is 0.67. As the length-diameter ratio increases, the tool pressure loss also increases. Regarding the cavity thickness, the impulse frequency of the oscillating cavity initially decreases, then increases, and finally decreases again. Moreover, both the impulse frequency and pressure loss increase with an increase in displacement. The numerical simulation findings align with the experimental results, thus confirming the validity of the theoretical model. This research provides theoretical guidance for the practical application of resonance rock-breaking technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...