Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.121
Filtrar
1.
Biochem Pharmacol ; 226: 116410, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969302

RESUMO

Elevated homocysteine (Hcy) levels are detrimental to neuronal cells and contribute to cognitive dysfunction in rats. Mitochondria plays a crucial role in cellular energy metabolism. Interestingly, the damaging effects of Hcy in vivo and in vitro conditions exhibit distinct results. Herein, we aimed to investigate the effects of Hcy on mitochondrial function in primary neurons and PC12 cells and explore the underlying mechanisms involved. The metabolic intermediates of Hcy act as methyl donors and play important epigenetic regulatory roles. N6-methyldeoxyadenosine (6 mA) modification, which is enriched in mitochondrial DNA (mtDNA), can be mediated by methylase METTL4. Our study suggested that mitochondrial perturbation caused by Hcy in primary neurons and PC12 cells may be attributable to mtDNA 6 mA modification difference. Hcy could activate the expression of METTL4 within mitochondria to facilitate mtDNA 6 mA status, and repress mtDNA transcription, then result in mitochondrial dysfunction.

2.
Mol Ther Nucleic Acids ; 35(2): 102225, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38948332

RESUMO

Chimeric antigen receptor T (CAR-T) cell therapy targeting T cell tumors still faces many challenges, one of which is its fratricide due to the target gene expressed on CAR-T cells. Despite this, these CAR-T cells can be expanded in vitro by extending the culture time and effectively eliminating malignant T cells. However, the mechanisms underlying CAR-T cell survival in cell subpopulations, the molecules involved, and their regulation are still unknown. We performed single-cell transcriptome profiling to investigate the fratricidal CAR-T products (CD26 CAR-Ts and CD44v6 CAR-Ts) targeting T cells, taking CD19 CAR-Ts targeting B cells from the same donor as a control. Compared with CD19 CAR-Ts, fratricidal CAR-T cells exhibit no unique cell subpopulation, but have more exhausted T cells, fewer cytotoxic T cells, and more T cell receptor (TCR) clonal amplification. Furthermore, we observed that fratricidal CAR-T cell survival was accompanied by target gene expression. Gene expression results suggest that fratricidal CAR-T cells may downregulate their human leukocyte antigen (HLA) molecules to evade T cell recognition. Single-cell regulatory network analysis and suppression experiments revealed that exhaustion mediated by critical regulatory factors may contribute to fratricidal CAR-T cell survival. Together, these data provide valuable and first-time insights into the survival of fratricidal CAR-T cells.

3.
AIDS ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007922

RESUMO

INTRODUCTION: The window period, defined as HIV nucleic acid test (NAT) reactivity but Western blot (WB) test inconclusive, is garnering more attention. Improving the detection efficiency of HIV high-risk populations in the window period is critical to reducing the risk of unanticipated transmission. The purpose of this study was to create an additional strategy for distinguishing indeterminate HIV infection cases. METHODS: Based on WB follow-up results, the individuals in this study were divided into persons in the HIV window period and persons without HIV. Plasma was analyzed using quantitative liquid chromatography tandem mass spectrometry (LC-MS/MS) to detect differentially expressed proteins (DEPs). The biological implications of these DEPs were investigated using enrichment analysis. Protein-protein interaction (PPI) analysis and LASSO regression were used to identify key proteins. The calibration curve, decision curve, and nomogram were utilized to create the model. RESULTS: Fifty-seven DEPs were screened out, with 33 up-regulated and 24 down-regulated in persons with HIV at window period. The most important Gene Ontology (GO) enrichment items are oxidoreductase activity and heme binding. Oxidoreductases account for half of the 10 main proteins identified from various DEPs. An auxiliary diagnostic model comprised of Peroxiredoxin-2 (P32119), Band 3 anion transport protein (P02730), and Histone H2A type 1 (P0C0S8) was developed. The results of the confusion matrix parameters revealed that this diagnostic approach had strong practicability in distinguishing indeterminate HIV infection cases. CONCLUSIONS: The three DEPs identified and predicted by proteomics are useful for the supplemental identification of persons in the HIV window period.

4.
J Gynecol Oncol ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38991946

RESUMO

OBJECTIVE: To analyze the fluctuations of patient-reported outcomes (PROs) and their relationships with cytokines in the peripheral blood of patients undergoing chemotherapy for ovarian cancer (OC). METHODS: PROs burden was prospectively measured by the M.D. Anderson Symptom Inventory-Ovarian Cancer (MDASI-OC) at baseline before chemotherapy, on a daily basis during and post-chemotherapy days (PCD) 7, 14, and 20. Cytokines were collected at baseline, days prior to hospital discharge and PCD 20. Pearson correlation was used to explore the associations between PROs and cytokines levels in peripheral blood. RESULTS: The top 8 rated symptoms were compared between the neoadjuvant chemotherapy (NACT) group (n=20) and the postoperative adjuvant chemotherapy (PAC) group (n=7). Before chemotherapy, the mean scores of fatigue and lack of appetite in the NACT group were higher than those in the PAC group. After chemotherapy, pain, nausea, vomiting, disturbed sleep, lack of appetite, and constipation increased to peak during PCD 2-6; while, fatigue and numbness or tingling remained at high levels over PCD 2-13. By PCD 20, disturbed sleep and fatigue showed a significant increase in mean scores, particularly in the NACT group; while, other symptom scores decreased and returned to baseline levels. Additionally, the longitudinal fluctuations in pain, fatigue, and lack of appetite were positively associated with circulating levels of interleukin-6 and interferon gamma (p<0.05). CONCLUSION: MDASI-OC was feasible and adaptable for demonstrating the fluctuations of symptom burden throughout chemotherapy course. Moreover, symptoms changing along with cytokines levels could provide clues for exploring mechanism underlying biochemical etiology.

5.
Front Med ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958923

RESUMO

Previous studies have confirmed that acupuncture for irritable bowel syndrome (IBS) provided an additional benefit over usual care alone. Therefore, we performed a multicenter, randomized, sham-controlled trial to assess the efficacy and safety of acupuncture versus sham acupuncture for refractory IBS in patients in the context of conventional treatments. Patients in the acupuncture and sham acupuncture groups received real or sham acupuncture treatment in 3 sessions per week for a total of 12 sessions. The primary outcome was a change in the IBS-Symptom Severity Scale (IBS-SSS) score from baseline to week 4. A total of 521 participants were screened, and 170 patients (85 patients per group) were enrolled and included in the intention-to-treat analysis. Baseline characteristics were comparable across the two groups. From baseline to 4 weeks, the IBS-SSS total score decreased by 140.0 (95% CI: 126.0 to 153.9) in the acupuncture group and 64.4 (95% CI: 50.4 to 78.3) in the sham acupuncture group. The between-group difference was 75.6 (95% CI: 55.8 to 95.4). Acupuncture efficacy was maintained during the 4-week follow-up period. There were no serious adverse events. In conclusion, acupuncture provided benefits when combined with treatment as usual, providing more options for the treatment of refractory IBS.

6.
Neurocrit Care ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844599

RESUMO

BACKGROUND: Social determinants of health (SDOH) have been linked to neurocritical care outcomes. We sought to examine the extent to which SDOH explain differences in decisions regarding life-sustaining therapy, a key outcome determinant. We specifically investigated the association of a patient's home geography, individual-level SDOH, and neighborhood-level SDOH with subsequent early limitation of life-sustaining therapy (eLLST) and early withdrawal of life-sustaining therapy (eWLST), adjusting for admission severity. METHODS: We developed unique methods within the Bridge to Artificial Intelligence for Clinical Care (Bridge2AI for Clinical Care) Collaborative Hospital Repository Uniting Standards for Equitable Artificial Intelligence (CHoRUS) program to extract individual-level SDOH from electronic health records and neighborhood-level SDOH from privacy-preserving geomapping. We piloted these methods to a 7 years retrospective cohort of consecutive neuroscience intensive care unit admissions (2016-2022) at two large academic medical centers within an eastern Massachusetts health care system, examining associations between home census tract and subsequent occurrence of eLLST and eWLST. We matched contextual neighborhood-level SDOH information to each census tract using public data sets, quantifying Social Vulnerability Index overall scores and subscores. We examined the association of individual-level SDOH and neighborhood-level SDOH with subsequent eLLST and eWLST through geographic, logistic, and machine learning models, adjusting for admission severity using admission Glasgow Coma Scale scores and disorders of consciousness grades. RESULTS: Among 20,660 neuroscience intensive care unit admissions (18,780 unique patients), eLLST and eWLST varied geographically and were independently associated with individual-level SDOH and neighborhood-level SDOH across diagnoses. Individual-level SDOH factors (age, marital status, and race) were strongly associated with eLLST, predicting eLLST more strongly than admission severity. Individual-level SDOH were more strongly predictive of eLLST than neighborhood-level SDOH. CONCLUSIONS: Across diagnoses, eLLST varied by home geography and was predicted by individual-level SDOH and neighborhood-level SDOH more so than by admission severity. Structured shared decision-making tools may therefore represent tools for health equity. Additionally, these findings provide a major warning: prognostic and artificial intelligence models seeking to predict outcomes such as mortality or emergence from disorders of consciousness may be encoded with self-fulfilling biases of geography and demographics.

7.
Foods ; 13(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38890958

RESUMO

Microfluidic technology, as a continuous and mass preparation method of nanoparticles, has attracted much attention in recent years. In this study, zein nanoparticles (ZNPs) were continuously fabricated in a highly controlled manner by combining a microfluidics platform with the antisolvent method. The impact of ethanol content (60~95%, v/v) and flow rates of inner and outer phases in the microfluidics platform on particle properties were examined. Among all ZNPS, 90%-ZNPs have the highest solubility (32.83%) and the lowest hydrophobicity (90.43), which is the reverse point of the hydrophobicity of ZNPs. Moreover, when the inner phase flow rate was 1.5 mL/h, the particle size decreased significantly from 182.81 nm to 133.13 nm as the outer phase flow rate increased from 10 mL/h to 50 mL/h. The results revealed that ethanol content had significant impacts on hydrophilic-hydrophobic properties of ZNPs. The flow rates of ethanol-water solutions and deionized water (solvent and antisolvent) in the microfluidics platform significantly affected the particle size of ZNPs. These findings demonstrated that the combined application of a microfluidics platform and an antisolvent method could be an effective pathway for precisely controlling the fabrication process of protein nanoparticles and modulating their physicochemical properties.

8.
BMC Geriatr ; 24(1): 531, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898411

RESUMO

BACKGROUND: Mild cognitive impairment has received widespread attention as a high-risk population for Alzheimer's disease, and many studies have developed or validated predictive models to assess it. However, the performance of the model development remains unknown. OBJECTIVE: The objective of this review was to provide an overview of prediction models for the risk of Alzheimer's disease dementia in older adults with mild cognitive impairment. METHOD: PubMed, EMBASE, Web of Science, and MEDLINE were systematically searched up to October 19, 2023. We included cohort studies in which risk prediction models for Alzheimer's disease dementia in older adults with mild cognitive impairment were developed or validated. The Predictive Model Risk of Bias Assessment Tool (PROBAST) was employed to assess model bias and applicability. Random-effects models combined model AUCs and calculated (approximate) 95% prediction intervals for estimations. Heterogeneity across studies was evaluated using the I2 statistic, and subgroup analyses were conducted to investigate sources of heterogeneity. Additionally, funnel plot analysis was utilized to identify publication bias. RESULTS: The analysis included 16 studies involving 9290 participants. Frequency analysis of predictors showed that 14 appeared at least twice and more, with age, functional activities questionnaire, and Mini-mental State Examination scores of cognitive functioning being the most common predictors. From the studies, only two models were externally validated. Eleven studies ultimately used machine learning, and four used traditional modelling methods. However, we found that in many of the studies, there were problems with insufficient sample sizes, missing important methodological information, lack of model presentation, and all of the models were rated as having a high or unclear risk of bias. The average AUC of the 15 best-developed predictive models was 0.87 (95% CI: 0.83, 0.90). DISCUSSION: Most published predictive modelling studies are deficient in rigour, resulting in a high risk of bias. Upcoming research should concentrate on enhancing methodological rigour and conducting external validation of models predicting Alzheimer's disease dementia. We also emphasize the importance of following the scientific method and transparent reporting to improve the accuracy, generalizability and reproducibility of study results. REGISTRATION: This systematic review was registered in PROSPERO (Registration ID: CRD42023468780).


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/psicologia , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/psicologia , Idoso , Medição de Risco/métodos
9.
Front Pediatr ; 12: 1383342, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827220

RESUMO

Objective: This study aimed to analyse the research hotspots and frontiers in the field of paediatric fever between 2013 and 2023. Methods: The included articles were visually analysed using CiteSpace 6.1.R6 software. Results: A total of 2,662 Chinese-language articles and 1,456 English-language articles were included in the study. Based on the Chinese literature, research groups were identified represented by Xinmin Li, Jinling Hong and Hongshuang Luo. Based on the English literature, research groups were formed represented by Henriette Moll, Santiago Mintegi and Elizabeth Alpern. Tianjin University of Traditional Chinese Medicine was the institution with the largest number of publications in the Chinese literature, and the Centers For Disease Control And Prevention was the institution with the largest number of publications in the English literature. The research on paediatric fever mainly focused on mechanism exploration, green treatment and clinical management. Conclusion: Several relatively stable research groups have been formed. Future studies on the differential diagnosis, rational drug use, standardised management and clinical practice guidelines for paediatric fever are needed.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38842766

RESUMO

BACKGROUND: Group A streptococcal(GAS) meningitis is a severe disease with a high case fatality rate. In the era of increasing GAS meningitis, our understanding about this disease is limited. PURPOSE: To gain a better understanding about GAS meningitis. METHODS: Five new cases with GAS meningitis were reported. GAS meningitis related literatures were searched for systematic review in PUBMED and EMBASE. Case reports and case series on paediatric cases were included. Information on demographics, risk factors, symptoms, treatments, outcomes, and emm types of GAS was summarized. RESULTS: Totally 263 cases were included. Among 100 individuals, 9.9% (8/81) had prior varicella, 11.1% (9/81) had anatomical factors, and 53.2% (42/79) had extracranial infections. Soft tissue infections were common among infants (10/29, 34.5%), while ear/sinus infections were more prevalent in children ≥ 3 years (21/42, 50.0%). The overall case fatality rate (CFR) was 16.2% (12/74). High risk of death was found in patients with shock or systemic complications, young children(< 3 years) and cases related to hematogenic spread. The predominate cause of death was shock(6/8). Among the 163 patients included in case series studies, ear/sinus infections ranged from 21.4 to 62.5%, while STSS/shock ranged from 12.5 to 35.7%, and the CFR ranged from 5.9 to 42.9%. CONCLUSIONS: A history of varicella, soft tissue infections, parameningeal infections and CSF leaks are important clinical clues to GAS in children with meningitis. Young children and hematogenic spread related cases need to be closely monitored for shock due to the high risk of death.

11.
Diagnostics (Basel) ; 14(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38893622

RESUMO

OBJECTIVE: Metabolic reprogramming serves as a distinctive feature of cancer, impacting proliferation and metastasis, with aberrant glycosphingolipid expression playing a crucial role in malignancy. Nevertheless, limited research has investigated the connection between glycosphingolipid metabolism and pancreatic cancer. METHODS: This study utilized a single-cell sequencing dataset to analyze the cell composition in pancreatic cancer tissues and quantified single-cell metabolism using a newly developed computational pipeline called scMetabolism. A gene signature developed from the differential expressed genes (DEGs), related to epithelial cell glycosphingolipid metabolism, was established to forecast patient survival, immune response, mutation status, and reaction to chemotherapy with pancreatic adenocarcinoma (PAAD). RESULTS: The single-cell sequencing analysis revealed a significant increase in epithelial cell proportions in PAAD, with high glycosphingolipid metabolism occurring in the cancerous tissue. A six-gene signature prognostic model based on abnormal epithelial glycosphingolipid metabolism was created and confirmed using publicly available databases. Patients with PAAD were divided into high- and low-risk categories according to the median risk score, with those in the high-risk group demonstrating a more unfavorable survival outcome in all three cohorts, with higher rates of gene mutations (e.g., KRAS, CDKN2A), increased levels of immunosuppressive cells (macrophages, Th2 cells, regulatory T cells), and heightened sensitivity to Acetalax and Selumetinlb. CONCLUSIONS: Abnormal metabolism of glycosphingolipids in epithelial cells may promote the development of PAAD. A model utilizing a gene signature associated with epithelial glycosphingolipids metabolism has been established, serving as a valuable indicator for the prognostic stratification of patients with PAAD.

12.
Phys Chem Chem Phys ; 26(24): 17182-17190, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38847738

RESUMO

ZnSeTe quantum dots (QDs) attract growing interest owing to their low threats to health and the environment. They are widely applied as emitters in displays and lighting devices. Previous findings have indicated that inorganic halides are excellent candidates for surface ligands on QDs. By incorporating inorganic halides during the synthesis process, the photoluminescence (PL) intensity and quantum yield (QY) of QDs can be significantly enhanced. However, the alteration of surface states in QDs induced by zinc halide modification and the mechanism of formation of trap-state radiative recombination processes have been less discussed. Herein, we proposed a synthesis strategy for ZnSeTe/ZnSe/ZnSeS/ZnS core/shell/shell/shell QDs modified with ZnCl2, and by comparing the morphology and elemental composition of QDs with different amounts of ZnCl2 added, we revealed the regulatory mechanism of nanocrystal growth in the presence of ZnCl2. QDs with modification of ZnCl2 exhibited broad yellow fluorescence, distinct from the intrinsic blue emission. Through spectroscopic and surface ligand analyses, we attributed this yellow emission to the intermediate state energy levels caused by the defects on the surface. Finally, we used the QDs with broad linewidth emission to fabricate a simple white-light-emitting diode (WLED). This work provided new insights into the role of inorganic ligands and the use of a single emitting material in solid-state lighting devices.

13.
Theranostics ; 14(8): 3317-3338, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855188

RESUMO

Metastasis is one of the key factors of treatment failure in late-stage colorectal cancer (CRC). Metastatic CRC frequently develops resistance to chemotherapeutic agents. This study aimed to identify the novel regulators from "hidden" proteins encoded by long noncoding RNAs (lncRNAs) involved in tumor metastasis and chemoresistance. Methods: CRISPR/Cas9 library functional screening was employed to identify the critical suppressor of cancer metastasis in highly invasive CRC models. Western blotting, immunofluorescence staining, invasion, migration, wound healing, WST-1, colony formation, gain- and loss-of-function experiments, in vivo experimental metastasis models, multiplex immunohistochemical staining, immunohistochemistry, qRT-PCR, and RT-PCR were used to assess the functional and clinical significance of FOXP3, PRDM16-DT, HNRNPA2B1, and L-CHEK2. RNA-sequencing, co-immunoprecipitation, qRT-PCR, RT-PCR, RNA affinity purification, RNA immunoprecipitation, MeRIP-quantitative PCR, fluorescence in situ hybridization, chromatin immunoprecipitation and luciferase reporter assay were performed to gain mechanistic insights into the role of PRDM16-DT in cancer metastasis and chemoresistance. An oxaliplatin-resistant CRC cell line was established by in vivo selection. WST-1, colony formation, invasion, migration, Biacore technology, gain- and loss-of-function experiments and an in vivo experimental metastasis model were used to determine the function and mechanism of cimicifugoside H-1 in CRC. Results: The novel protein PRDM16-DT, encoded by LINC00982, was identified as a cancer metastasis and chemoresistance suppressor. The down-regulated level of PRDM16-DT was positively associated with malignant phenotypes and poor prognosis of CRC patients. Transcriptionally regulated by FOXP3, PRDM16-DT directly interacted with HNRNPA2B1 and competitively decreased HNRNPA2B1 binding to exon 9 of CHEK2, resulting in the formation of long CHEK2 (L-CHEK2), subsequently promoting E-cadherin secretion. PRDM16-DT-induced E-cadherin secretion inhibited fibroblast activation, which in turn suppressed CRC metastasis by decreasing MMP9 secretion. Cimicifugoside H-1, a natural compound, can bind to LEU89, HIS91, and LEU92 of FOXP3 and significantly upregulated PRDM16-DT expression to repress CRC metastasis and reverse oxaliplatin resistance. Conclusions: lncRNA LINC00982 can express a new protein PRDM16-DT to function as a novel regulator in cancer metastasis and drug resistance of CRC. Cimicifugoside H-1 can act on the upstream of the PRDM16-DT signaling pathway to alleviate cancer chemoresistance.


Assuntos
Neoplasias Colorretais , Proteínas de Ligação a DNA , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Metástase Neoplásica , RNA Longo não Codificante , Fatores de Transcrição , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Camundongos Endogâmicos BALB C , Camundongos Nus , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Splicing de RNA/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
14.
Sci Total Environ ; 946: 174124, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909790

RESUMO

Resource limitation for soil microorganisms is the crucial factor in nutrient cycling and vegetation development, which are especially important in arid climate. Given that rock fragments strongly impact hydrologic and geochemical processes in arid areas, we hypothesized that microbial resource (C and N) limitation will increase along the rock fragment content (RFC) gradient. We conducted a field experiment in Minjiang river arid valleys with four RFC content (0 %, 25 %, 50 %, and 75 %, V V-1) and four vegetation types (Artemisia vestita, Bauhinia brachycarpa, Sophora davidii, and the soil without plants). Activities of C (ß-1,4-glucosidase, BG), N (ß-1,4-N-acetyl-glucosaminidase, NAG; L-leucine aminopeptidase, LAP), and P (acid phosphatase, ACP) acquiring enzymes were investigated to assess the limitations by C, N or P. In unplanted soil, the C acquiring enzyme activity decreased by 43 %, but N acquiring enzyme activity increased by 72 % in 75 % RFC than those in rock-free soils (0 % RFC). Increasing RFC reduced C:N and C:P enzymatic ratios, as well as vector length and vector angle (< 45°). Plants increased the activities of C and N acquiring enzymes in soils, as well as C:P and N:P enzyme activities, as well as vector length (by 5.6 %-25 %), but decreased vector angle (by 13 %-21 %). Enzyme stoichiometry was dependent on biotic and abiotic factors, such as soil water content, soil C:N, and total content of phospholipid fatty acids, reflecting microbial biomass content. Increased RFC shifted enzymatic stoichiometry toward lower C but stronger N limitation for microorganisms. Vegetation increased microbial C and N limitation, and impacted the enzymatic activities and stoichiometry depending on shrub functional groups. Consequently, the direct effects of vegetation, nutrient availability and microbial biomass content, as well as indirect effects of soil properties collectively increased microbial resource limitations along the RFC gradient.

15.
J Invest Dermatol ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909840

RESUMO

Precise evaluation of repigmentation in vitiligo patients is crucial for monitoring treatment efficacy and enhancing patient satisfaction. This study aimed to develop a computer-aided system for assessing repigmentation rates in vitiligo patients, providing valuable insights for clinical practice. A retrospective study was conducted at the Dermatology Department of Shenzhen People's Hospital between June 2019 and November 2022. Pre- and post-treatment images of vitiligo lesions under Wood's lamp were collected, involving 833 participants stratified by sex, age, and pigmentation patterns. Our results demonstrated that the marginal pigmentation pattern exhibited a higher repigmentation rate of 72% compared with the central non-follicular pattern at 45%. Males had a slightly higher average repigmentation rate of 0.37 in comparison to females at 0.33. Among age groups, individuals aged 0-20 years showed the highest average repigmentation rate at 0.41, while the oldest age group (61-80 years) displayed the lowest rate at 0.25. Analysis of multiple visits identified the marginal pattern as the most prevalent (60%), with a mean repigmentation rate of 40%. This study introduced a computational system for evaluating vitiligo repigmentation rates, enhancing our comprehension of patient responses, and ultimately contributing to enhanced clinical care.

16.
J Virol ; : e0033424, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829137

RESUMO

Porcine deltacoronavirus (PDCoV) is an enteric pathogenic coronavirus that causes acute and severe watery diarrhea in piglets and has the ability of cross-species transmission, posing a great threat to swine production and public health. The interferon (IFN)-mediated signal transduction represents an important component of virus-host interactions and plays an essential role in regulating viral infection. Previous studies have suggested that multifunctional viral proteins encoded by coronaviruses antagonize the production of IFN via various means. However, the function of these viral proteins in regulating IFN-mediated signaling pathways is largely unknown. In this study, we demonstrated that PDCoV and its encoded nucleocapsid (N) protein antagonize type I IFN-mediated JAK-STAT signaling pathway. We identified that PDCoV infection stimulated but delayed the production of IFN-stimulated genes (ISGs). In addition, PDCoV inhibited JAK-STAT signal transduction by targeting the nuclear translocation of STAT1 and ISGF3 formation. Further evidence showed that PDCoV N is the essential protein involved in the inhibition of type I IFN signaling by targeting STAT1 nuclear translocation via its C-terminal domain. Mechanistically, PDCoV N targets STAT1 by interacting with it and subsequently inhibiting its nuclear translocation. Furthermore, PDCoV N inhibits STAT1 nuclear translocation by specifically targeting KPNA2 degradation through the lysosomal pathway, thereby inhibiting the activation of downstream sensors in the JAK-STAT signaling pathway. Taken together, our results reveal a novel mechanism by which PDCoV N interferes with the host antiviral response.IMPORTANCEPorcine deltacoronavirus (PDCoV) is a novel enteropathogenic coronavirus that receives increased attention and seriously threatens the pig industry and public health. Understanding the underlying mechanism of PDCoV evading the host defense during infection is essential for developing targeted drugs and effective vaccines against PDCoV. This study demonstrated that PDCoV and its encoded nucleocapsid (N) protein antagonize type I interferon signaling by targeting STAT1, which is a crucial signal sensor in the JAK-STAT signaling pathway. Further experiments suggested that PDCoV N-mediated inhibition of the STAT1 nuclear translocation involves the degradation of KPNA2, and the lysosome plays a role in KPNA2 degradation. This study provides new insights into the regulation of PDCoV N in the JAK-STAT signaling pathway and reveals a novel mechanism by which PDCoV evades the host antiviral response. The novel findings may guide us to discover new therapeutic targets and develop live attenuated vaccines for PDCoV infection.

17.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2585-2596, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38812159

RESUMO

This study investigated the effects and mechanisms of total saponins of Panax japonicus(TSPJ) against liver injury induced by acetaminophen(APAP). Male Kunming mice were randomly divided into a blank control group, TSPJ group(200 mg·kg~(-1), ig), model group, APAP+ TSPJ low-dose group(50 mg·kg~(-1), ig), APAP+ TSPJ medium-dose group(100 mg·kg~(-1), ig), APAP+ TSPJ high-dose group(200 mg·kg~(-1), ig), and APAP+ N-acetyl-L-cysteine group(200 mg·kg~(-1), ip). The administration group received the corresponding medications via ig or ip once a day for 14 consecutive days. After the last administration for one hour, except for the blank control group and TSPJ group, all groups of mice were given 500 mg·kg~(-1) APAP by gavage. After 24 hours, mouse serum and liver tissue were collected for serum alanine aminotransferase(ALT), aspartate aminotransferase(AST), reactive oxygen species(ROS), tumor necrosis factor alpha(TNF-α), interleukin-1 beta(IL-1ß), cyclooxygenase-2(COX-2), IL-6, IL-4, IL-10, as well as lactate dehydrogenase(LDH), glutathione(GSH), superoxide dismutase(SOD), catalase(CAT), total antioxidant capacity(T-AOC), malondialdehyde(MDA), and myeloperoxidase(MPO) liver tissue. Hematoxylin-eosin staining was used to observe the morphological changes of liver tissue. The mRNA expression levels of lymphocyte antigen 6G(Ly6G), galectin 3(Mac-2), TNF-α, IL-1ß, COX-2, IL-6, IL-4, and IL-10 in liver tissue were determined by quantitative real-time polymerase chain reaction(PCR). Western blot was utilized to detect the protein expression levels of Ly6G, Mac-2, extracellular regulated protein kinases(ERK), phosphorylated extracellular regulated protein kinases(p-ERK), COX-2, inhibitor of nuclear factor κB protein α(IκBα), phosphorylated inhibitor of nuclear factor κB protein α(p-IκBα), and nuclear factor-κB subunit p65(NF-κB p65) in cytosol and nucleus in liver tissue. The results manifested that TSPJ dramatically reduced liver coefficient, serum ALT, AST, ROS, TNF-α, IL-1ß, IL-6, and COX-2 levels, LDH, MPO, and MDA contents in liver tissue, and mRNA expressions of TNF-α, IL-1ß, and IL-6 in APAP-induced liver injury mice. It prominently elevated serum IL-4 and IL-10 levels, GSH, CAT, SOD, and T-AOC contents, and mRNA expressions of IL-4 and IL-10 in liver tissue, improved the degree of liver pathological damage, and suppressed neutrophil infiltration and macrophage recruitment in liver tissue. In addition, TSPJ lessened the mRNA and protein expressions of neutrophil marker Ly6G, macrophage marker Mac-2, and COX-2 in liver tissue, protein expressions of p-ERK, p-IκBα, and NF-κB p65 in nuclear, and p-ERK/ERK and p-IκBα/p-IκBα ratios and hoisted protein expression of NF-κB p65 in cytosol. These results suggest that TSPJ has a significant protective effect on APAP-induced liver injury in mice, and it can alleviate APAP-induced oxidative damage and inflammatory response. Its mechanism may be related to suppressing ERK/NF-κB/COX-2 signaling pathway activation, thus inhibiting inflammatory cell infiltration, cytokine production, and liver cell damage.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Ciclo-Oxigenase 2 , Fígado , NF-kappa B , Panax , Saponinas , Transdução de Sinais , Animais , Acetaminofen/efeitos adversos , Acetaminofen/toxicidade , Camundongos , Panax/química , Masculino , Saponinas/farmacologia , Saponinas/administração & dosagem , NF-kappa B/genética , NF-kappa B/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Transdução de Sinais/efeitos dos fármacos , Humanos , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacologia
18.
ACS Appl Mater Interfaces ; 16(20): 26395-26405, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38728440

RESUMO

Detection of leaks of flammable methane (CH4) gas in a timely manner can mitigate health, safety, and environmental risks. Zinc oxide (ZnO), a polar semiconductor with controllable surface defects, is a promising material for gas sensing. In this study, Ag-Ru co-doped into self-assembled ZnO nanorod arrays (ZnO NRs) was prepared by a one-step hydrothermal method. The Ag-Ru co-doped sample shows a good hydrophobic property as a result of its particular microstructure, which results in high humidity resistance. In addition, oxygen vacancy density significantly increased after Ag-Ru co-doping. Density functional theory (DFT) calculations revealed an exceptionally high charge density accumulated at the Ru sites and the formation of a localized strong electric field, which provides additional energy for the CH4 reaction with •O2- at the surface at room temperature. Optimized AgRu0.025-ZnO demonstrated an outstanding CH4 sensing performance, with a limit of detection (LOD) as low as 2.24 ppm under free-heat and free-light conditions. These findings suggest that introducing defects into the ZnO lattice, such as oxygen vacancies and localized ions, offers a promising approach to improving the gas sensing performance.

20.
Fitoterapia ; 176: 106028, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38768796

RESUMO

Kaempferia galanga L. is an aromatic medicinal plant belonging to the Zingiberaceae family. Its rhizome has been widely used as traditional Chinese medicine and a flavor spice for a long time. In this study, six previously undescribed phenylpropanoids, including four [2+2]-cycloaddition-derived cyclobutane natural products (1-4), and two phenylpropanoids (5-6) were isolated from the rhizomes of K. galanga L. Their structures were elucidated by spectroscopic methods, single-crystal X-ray diffraction, NMR calculation, and ECD spectra calculation. These cyclobutane derivatives were isolated from K. galanga for the first time. Furthermore, compounds 1-6 were evaluated for the potential inhibitory activities on NO production and NF-κB nuclear translocation in LPS-triggered RAW 264.7 macrophages. The results showed that the isolated compounds have a moderate anti-inflammatory activity measured on their potency to inhibit NO production and the expression of iNOS and COX-2. Additionally, compound 2 effectively suppressed NF-κB nuclear translocation at a concentration of 40 µM.


Assuntos
Anti-Inflamatórios , NF-kappa B , Óxido Nítrico , Compostos Fitoquímicos , Rizoma , Zingiberaceae , Células RAW 264.7 , Camundongos , Animais , Zingiberaceae/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/isolamento & purificação , Estrutura Molecular , NF-kappa B/metabolismo , NF-kappa B/antagonistas & inibidores , Rizoma/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , China , Ciclo-Oxigenase 2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...