Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2433, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499545

RESUMO

Nonlinear optical processing of ambient natural light is highly desired for computational imaging and sensing. Strong optical nonlinear response under weak broadband incoherent light is essential for this purpose. By merging 2D transparent phototransistors (TPTs) with liquid crystal (LC) modulators, we create an optoelectronic neuron array that allows self-amplitude modulation of spatially incoherent light, achieving a large nonlinear contrast over a broad spectrum at orders-of-magnitude lower intensity than achievable in most optical nonlinear materials. We fabricated a 10,000-pixel array of optoelectronic neurons, and experimentally demonstrated an intelligent imaging system that instantly attenuates intense glares while retaining the weaker-intensity objects captured by a cellphone camera. This intelligent glare-reduction is important for various imaging applications, including autonomous driving, machine vision, and security cameras. The rapid nonlinear processing of incoherent broadband light might also find applications in optical computing, where nonlinear activation functions for ambient light conditions are highly sought.

2.
Nat Commun ; 15(1): 1525, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378715

RESUMO

Structured optical materials create new computing paradigms using photons, with transformative impact on various fields, including machine learning, computer vision, imaging, telecommunications, and sensing. This Perspective sheds light on the potential of free-space optical systems based on engineered surfaces for advancing optical computing. Manipulating light in unprecedented ways, emerging structured surfaces enable all-optical implementation of various mathematical functions and machine learning tasks. Diffractive networks, in particular, bring deep-learning principles into the design and operation of free-space optical systems to create new functionalities. Metasurfaces consisting of deeply subwavelength units are achieving exotic optical responses that provide independent control over different properties of light and can bring major advances in computational throughput and data-transfer bandwidth of free-space optical processors. Unlike integrated photonics-based optoelectronic systems that demand preprocessed inputs, free-space optical processors have direct access to all the optical degrees of freedom that carry information about an input scene/object without needing digital recovery or preprocessing of information. To realize the full potential of free-space optical computing architectures, diffractive surfaces and metasurfaces need to advance symbiotically and co-evolve in their designs, 3D fabrication/integration, cascadability, and computing accuracy to serve the needs of next-generation machine vision, computational imaging, mathematical computing, and telecommunication technologies.

3.
ACS Appl Mater Interfaces ; 15(48): 55856-55869, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37983103

RESUMO

Transferring traditional plasmonic noble metal nanomaterials from the laboratory to industrial production has remained challenging due to the high price of noble metals. The development of cost-effective non-noble-metal alternatives with outstanding plasmonic properties has therefore become essential. Herein, we report on the gram-scale production of differently shaped TiN nanoparticles with strong plasmon-enabled broadband light absorption, including differently sized TiN nanospheres, nanobipyramids, and nanorod arrays. The TiN nanospheres and nanobipyramids are further coembedded in highly porous poly(vinyl alcohol) films to function as a photothermal material for solar seawater desalination. A seawater evaporation rate of 3.8 kg m-2 h-1 is achieved, which marks the record performance among all plasmonic solar seawater desalination systems reported so far. The removal percentage of phenol reaches 98.3%, which is attributed to the joint action of the excellent photocatalytic ability and the superhydrophilicity of the porous TiN-based composite film.

4.
Nat Commun ; 14(1): 6791, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880258

RESUMO

Terahertz waves offer advantages for nondestructive detection of hidden objects/defects in materials, as they can penetrate most optically-opaque materials. However, existing terahertz inspection systems face throughput and accuracy restrictions due to their limited imaging speed and resolution. Furthermore, machine-vision-based systems using large-pixel-count imaging encounter bottlenecks due to their data storage, transmission and processing requirements. Here, we report a diffractive sensor that rapidly detects hidden defects/objects within a 3D sample using a single-pixel terahertz detector, eliminating sample scanning or image formation/processing. Leveraging deep-learning-optimized diffractive layers, this diffractive sensor can all-optically probe the 3D structural information of samples by outputting a spectrum, directly indicating the presence/absence of hidden structures or defects. We experimentally validated this framework using a single-pixel terahertz time-domain spectroscopy set-up and 3D-printed diffractive layers, successfully detecting unknown hidden defects inside silicon samples. This technique is valuable for applications including security screening, biomedical sensing and industrial quality control.

5.
J Phys Chem Lett ; 14(38): 8525-8530, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37722092

RESUMO

This paper describes how two-dimensional plasmonic nanoparticle lattices covered with microscale arrays of dielectric patches can show superlattice surface lattice resonances (SLRs). These optical resonances originate from multiscale diffractive coupling that can be controlled by the periodicity and size of the patterned dielectrics. The features in the optical dispersion diagram are similar to those of index-matched microscale arrays of metal nanoparticle lattices, having the same lateral dimensions as the dielectric patches. With an increase in nanoparticle size, superlattice SLRs can also support quadrupole excitations with distinct dispersion diagrams. The tunable optical band structure enabled by patterned dielectrics on plasmonic nanoparticle arrays offers prospects for enhanced nonlinear optics, nanoscale lasing, and engineered parity-time symmetries.

6.
Adv Mater ; 35(51): e2303395, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37633311

RESUMO

Controlled synthesis of optical fields having nonuniform polarization distributions presents a challenging task. Here, a universal polarization transformer is demonstrated that can synthesize a large set of arbitrarily-selected, complex-valued polarization scattering matrices between the polarization states at different positions within its input and output field-of-views (FOVs). This framework comprises 2D arrays of linear polarizers positioned between isotropic diffractive layers, each containing tens of thousands of diffractive features with optimizable transmission coefficients. After its deep learning-based training, this diffractive polarization transformer can successfully implement Ni No = 10 000 different spatially-encoded polarization scattering matrices with negligible error, where Ni and No represent the number of pixels in the input and output FOVs, respectively. This universal polarization transformation framework is experimentally validated in the terahertz spectrum by fabricating wire-grid polarizers and integrating them with 3D-printed diffractive layers to form a physical polarization transformer. Through this set-up, an all-optical polarization permutation operation of spatially-varying polarization fields is demonstrated, and distinct spatially-encoded polarization scattering matrices are simultaneously implemented between the input and output FOVs of a compact diffractive processor. This framework opens up new avenues for developing novel devices for universal polarization control and may find applications in, e.g., remote sensing, medical imaging, security, material inspection, and machine vision.

7.
Phys Chem Chem Phys ; 25(29): 19358-19370, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37439122

RESUMO

Plasmonic photocatalysis has recently attracted much attention in enhancing the solar-to-chemical conversion efficiency (SCCE) owing to localized surface plasmon resonance (LSPR), whose energy can be synthetically varied from the ultraviolet through the visible to the near-infrared region. This wide variability is inaccessible by traditional semiconductor photocatalysts. However, for all-metal plasmonic photocatalysts, the photogenerated hot charge carriers have an ultrashort lifetime because of their rapid recombination. For most metal-semiconductor hybrid plasmonic photocatalysts, a large portion of plasmonic hot charge carriers is lost during transfer from the metal to the semiconductor because of the Schottky barrier formed at the metal-semiconductor interface. As a result, both types of plasmonic photocatalysts exhibit limited SCCEs. To overcome the aforementioned shortcomings, a new type of plasmonic photocatalyst, the Schottky-barrier-free plasmonic photocatalyst, has been proposed recently. This type of plasmonic photocatalyst not only possesses LSPR to generate abundant hot charge carriers, but is also Schottky-barrier-free so that the hot charge carriers can be utilized more sufficiently to drive redox reactions. In this perspective, we first discuss the different types of plasmonic photocatalysts using representative examples, then introduce Schottky-barrier-free plasmonic photocatalysts, and finally provide the major challenges and remaining questions of this new type of plasmonic photocatalyst. We believe this perspective will offer insight into the further development of plasmonic photocatalysis and the improvement of its SCCEs.

8.
Chem Rev ; 123(11): 6891-6952, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37133878

RESUMO

All forms of energy follow the law of conservation of energy, by which they can be neither created nor destroyed. Light-to-heat conversion as a traditional yet constantly evolving means of converting light into thermal energy has been of enduring appeal to researchers and the public. With the continuous development of advanced nanotechnologies, a variety of photothermal nanomaterials have been endowed with excellent light harvesting and photothermal conversion capabilities for exploring fascinating and prospective applications. Herein we review the latest progresses on photothermal nanomaterials, with a focus on their underlying mechanisms as powerful light-to-heat converters. We present an extensive catalogue of nanostructured photothermal materials, including metallic/semiconductor structures, carbon materials, organic polymers, and two-dimensional materials. The proper material selection and rational structural design for improving the photothermal performance are then discussed. We also provide a representative overview of the latest techniques for probing photothermally generated heat at the nanoscale. We finally review the recent significant developments of photothermal applications and give a brief outlook on the current challenges and future directions of photothermal nanomaterials.

9.
Nat Nanotechnol ; 18(5): 514-520, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36781995

RESUMO

Superposing two or more periodic structures to form moiré patterns is emerging as a promising platform to confine and manipulate light. However, moiré-facilitated interactions and phenomena have been constrained to the vicinity of moiré lattices. Here we report on the observation of ultralong-range coupling between photonic lattices in bilayer and multilayer moiré architectures mediated by dark surface lattice resonances in the vertical direction. We show that two-dimensional plasmonic nanoparticle lattices enable twist-angle-controlled directional lasing emission, even when the lattices are spatially separated by distances exceeding three orders of magnitude of lattice periodicity. Our discovery of far-field interlattice coupling opens the possibility of using the out-of-plane dimension for optical manipulation on the nanoscale and microscale.

10.
Nat Chem ; 15(1): 119-128, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36280766

RESUMO

Interactions between the microbiota and their colonized environments mediate critical pathways from biogeochemical cycles to homeostasis in human health. Here we report a soil-inspired chemical system that consists of nanostructured minerals, starch granules and liquid metals. Fabricated via a bottom-up synthesis, the soil-inspired chemical system can enable chemical redistribution and modulation of microbial communities. We characterize the composite, confirming its structural similarity to the soil, with three-dimensional X-ray fluorescence and ptychographic tomography and electron microscopy imaging. We also demonstrate that post-synthetic modifications formed by laser irradiation led to chemical heterogeneities from the atomic to the macroscopic level. The soil-inspired material possesses chemical, optical and mechanical responsiveness to yield write-erase functions in electrical performance. The composite can also enhance microbial culture/biofilm growth and biofuel production in vitro. Finally, we show that the soil-inspired system enriches gut bacteria diversity, rectifies tetracycline-induced gut microbiome dysbiosis and ameliorates dextran sulfate sodium-induced rodent colitis symptoms within in vivo rodent models.


Assuntos
Colite , Microbioma Gastrointestinal , Humanos , Animais , Solo/química , Colite/induzido quimicamente , Colite/metabolismo , Homeostase , Modelos Animais de Doenças
11.
Chem Rev ; 122(19): 15177-15203, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-35762982

RESUMO

This Review focuses on the integration of plasmonic and dielectric metasurfaces with emissive or stimuli-responsive materials for manipulating light-matter interactions at the nanoscale. Metasurfaces, engineered planar structures with rationally designed building blocks, can change the local phase and intensity of electromagnetic waves at the subwavelength unit level and offers more degrees of freedom to control the flow of light. A combination of metasurfaces and nanoscale emitters facilitates access to weak and strong coupling regimes for enhanced photoluminescence, nanoscale lasing, controlled quantum emission, and formation of exciton-polaritons. In addition to emissive materials, functional materials that respond to external stimuli can be combined with metasurfaces to engineer tunable nanophotonic devices. Emerging metasurface designs including surface-functionalized, chemically tunable, and multilayer hybrid metasurfaces open prospects for diverse applications, including photocatalysis, sensing, displays, and quantum information.

12.
Nano Lett ; 21(18): 7775-7780, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34490777

RESUMO

This Letter describes strong coupling of densely packed molecular emitters in metal-organic frameworks (MOFs) and plasmonic nanoparticle (NP) lattices. Porphyrin-derived ligands with small transition dipole moments in an ordered MOF film were grown on Ag NP arrays. Angle-resolved optical measurements of the MOF-NP lattice system showed the formation of a polariton that is lower in energy and does not cross the uncoupled MOF Q1 band. Modeling predicted the upper polariton energy and a calculated Rabi splitting of 110 meV. The coupling strength was systematically controlled by detuning the plasmon energy by changing the refractive index of the solvents infiltrating the MOF pores. Through transient absorption spectroscopy, we found that the lower polariton decays quickly at shorter time scales (<500 ps) and slowly at longer times because of energy transfer from the upper polariton. This hybrid system demonstrates how MOFs can function as an accessible excitonic material for polariton chemistry.

13.
ACS Nano ; 15(3): 5567-5573, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33689315

RESUMO

Because of translational symmetry, electromagnetic fields confined within 2D periodic optical structures can be represented within the first Brillouin zone (BZ). In contrast, the wavevectors of scattered electromagnetic fields outside the lattice are constrained by the 3D light cone, the free-photon dispersion in the surrounding medium. Here, we report that light-cone surface lattice resonances (SLRs) from plasmonic nanoparticle lattices can be used to observe the radiated electromagnetic fields from extended BZ edges. Our coupled dipole radiation theory reveals how lattice geometry and induced surface plasmon dipole orientation affect angular distributions of the radiated fields. Using dye molecules as local dipole emitters to excite the light-cone SLR modes, we experimentally identified high-order BZ edges by directional, in-plane lasing emission. These results provide insight into nanolaser architectures that can emit at multiple wavelengths and in-plane directions simply by rotating the nanocavity lattice.

14.
J Am Chem Soc ; 143(10): 3671-3676, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33661606

RESUMO

This paper describes the light-directed functionalization of anisotropic gold nanoparticles with different thiolated-DNA oligomer (oligo) sequences. The starting nanoconstructs are gold nanostars (AuNS) uniformly grafted with one oligo sequence that are then exposed to fs-laser pulses at the plasmon resonance of the branches. The excitation selectively cleaves Au-S bonds at the tips of the branches to create vacant areas for functionalization with a different thiolated oligo sequence. Nanoconstructs synthesized by this approach present one oligo sequence on the AuNS body and branches and a different sequence at the tips. This process enables the formation of nanoparticle superstructures consisting of AuNS cores and small Au satellite nanoparticles at controlled locations after DNA hybridization. Our strategy enables selective oligo presentation at the single-particle level and opens prospects for sophisticated design of nanoscale assemblies that are important in a wide range of biological applications.


Assuntos
DNA/química , Ouro/química , Luz , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão
15.
ACS Cent Sci ; 6(12): 2339-2346, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33376795

RESUMO

This paper describes a computational imaging platform to determine the orientation of anisotropic optical probes under differential interference contrast (DIC) microscopy. We established a deep-learning model based on data sets of DIC images collected from metal nanoparticle optical probes at different orientations. This model predicted the in-plane angle of gold nanorods with an error below 20°, the inherent limit of the DIC method. Using low-symmetry gold nanostars as optical probes, we demonstrated the detection of in-plane particle orientation in the full 0-360° range. We also showed that orientation predictions of the same particle were consistent even with variations in the imaging background. Finally, the deep-learning model was extended to enable simultaneous prediction of in-plane and out-of-plane rotation angles for a multibranched nanostar by concurrent analysis of DIC images measured at multiple wavelengths.

16.
Proc Natl Acad Sci U S A ; 117(38): 23380-23384, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32900952

RESUMO

This paper reports how the spectral linewidths of plasmon resonances can be narrowed down to a few nanometers by optimizing the morphology, surface roughness, and crystallinity of metal nanoparticles (NPs) in two-dimensional (2D) lattices. We developed thermal annealing procedures to achieve ultranarrow surface lattice resonances (SLRs) with full-width at half-maxima linewidths as narrow as 4 nm from arrays of Au, Ag, Al, and Cu NPs. Besides annealing, we developed a chemical vapor deposition process to use Cu NPs as catalytic substrates for graphene growth. Graphene-encapsulated Cu NPs showed the narrowest SLR linewidths (2 nm) and were stable for months. These ultranarrow SLR nanocavity modes supported even narrower lasing emission spectra and high nonlinearity in the input-output light-light curves.

17.
ACS Nano ; 13(11): 12408-12414, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31613599

RESUMO

This work reports a massively parallel approach for synthesizing inorganic nanoparticles (Au, Ag, Se, and mixed oxides of Cu, Co, Ni, Ge, and Ta) based upon lithographically generated arrays of square pyramidal nanoholes, which serve as nanoreactors. Particle precursor-containing polymers are spin-coated onto the nanoreactors, which upon dewetting generate a morphology of isolated polymer droplets in each nanoreactor. This dewetting process yields a well-defined and precisely controlled volume of polymer and therefore particle precursor in each nanoreactor. Subsequent stepwise annealing (first at 150 °C and then at 500 °C) yields arrays of monodisperse, site-isolated particles with sub-5 nm position control. By varying the precursor loading of the polymer, particle size can be systematically controlled in the 7-30 nm range. This work not only introduces the concept of merging block copolymer inks with nanohole arrays in the synthesis of nanoparticles but also underscores the value of the nanoreactor shape in controlling resulting particle position.

18.
Acc Chem Res ; 52(11): 2997-3007, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31596570

RESUMO

Rationally assembled nanostructures exhibit distinct physical and chemical properties beyond their individual units. Developments in nanofabrication techniques have enabled the patterning of a wide range of nanomaterial designs over macroscale (>in.2) areas. Periodic metal nanostructures show long-range diffractive interactions when the lattice spacing is close to the wavelength of the incident light. The collective coupling between metal nanoparticles in a lattice introduces sharp and intense plasmonic surface lattice resonances, in contrast to the broad localized resonances from single nanoparticles. Plasmonic nanoparticle lattices exhibit strongly enhanced optical fields within the subwavelength vicinity of the nanoparticle unit cells that are 2 orders of magnitude higher than that of individual units. These intense electromagnetic fields can manipulate nanoscale processes such as photocatalysis, optical spectroscopy, nonlinear optics, and light harvesting. This Account focuses on advances in exciton-plasmon coupling and light-matter interactions with plasmonic nanoparticle lattices. First, we introduce the fundamentals of ultrasharp surface lattice resonances; these resonances arise from the coupling of the localized surface plasmons of a nanoparticle to the diffraction mode from the lattice. Second, we discuss how integrating dye molecules with plasmonic nanoparticle lattices can result in an architecture for nanoscale lasing at room temperature. The lasing emission wavelength can be tuned in real time by adjusting the refractive index environment or varying the lattice spacing. Third, we describe how manipulating either the shape of the unit cell or the lattice geometry can control the lasing emission properties. Low-symmetry plasmonic nanoparticle lattices can show polarization-dependent lasing responses, and multiscale plasmonic superlattices-finite patches of nanoparticles grouped into microscale arrays-can support multiple plasmon resonances for controlled multimodal nanolasing. Fourth, we discuss how the assembly of photoactive emitters on the nanocavity arrays behaves as a hybrid materials system with enhanced exciton-plasmon coupling. Positioning metal-organic framework materials around nanoparticles produces mixed photon modes with strongly enhanced photoluminescence at wavelengths determined by the lattice. Deterministic coupling of quantum emitters in two-dimensional materials to plasmonic lattices leads to preserved single-photon emission and reduced decay lifetimes. Finally, we highlight emerging applications of nanoparticle lattices from compact, fully reconfigurable imaging devices to solid-state emitter structures. Plasmonic nanoparticle lattices are a versatile, scalable platform for tunable flat optics, nontrivial topological photonics, and modified chemical reactivities.

19.
Nano Lett ; 19(9): 6435-6441, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31390214

RESUMO

This paper reports hierarchical hybridization as a mode-mixing scheme to account for the unique optical properties of non-Bravais lattices of plasmonic nanoparticles (NPs). The formation of surface lattice resonances (SLRs) mediated by localized surface plasmons (LSPs) of different multipolar orders (dipole and quadrupole) can result in asymmetric electric near-field distributions surrounding the NPs. This asymmetry is because of LSP hybridization at the individual NP level from LSPs of different multipole order and at the unit cell level (NP dimer) from LSPs of the same multipole order. Fabricated honeycomb lattices of silver NPs exhibit ultrasharp SLRs at the Γ point that can also facilitate nanolasing. Modeling of the stimulated emission process revealed that the multipolar component of the lattice plasmon mode was responsible for feedback for lasing. By leveraging multipolar LSP responses in Al NP lattices, we achieved two distinct Γ point band-edge modes from a single honeycomb lattice. This work highlights how multipolar LSP coupling in plasmonic lattices with a non-Bravais symmetry has important implications for the design of SLRs and their associated plasmonic near-field distributions. These relatively unexplored degrees of freedom can decrease both ohmic and radiative losses in nanoscale systems and enable SLRs to build unanticipated connections among photonics and nanochemistry.

20.
Proc Natl Acad Sci U S A ; 116(13): 5925-5930, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30850522

RESUMO

This paper describes how metal-organic frameworks (MOFs) conformally coated on plasmonic nanoparticle arrays can support exciton-plasmon modes with features resembling strong coupling but that are better understood by a weak coupling model. Thin films of Zn-porphyrin MOFs were assembled by dip coating on arrays of silver nanoparticles (NP@MOF) that sustain surface lattice resonances (SLRs). Coupling of excitons with these lattice plasmons led to an SLR-like mixed mode in both transmission and transient absorption spectra. The spectral position of the mixed mode could be tailored by detuning the SLR in different refractive index environments and by changing the periodicity of the nanoparticle array. Photoluminescence showed mode splitting that can be interpreted as modulation of the exciton line shape by the Fano profile of the surface lattice mode, without requiring Rabi splitting. Compared with pristine Zn-porphyrin, hybrid NP@MOF structures achieved a 16-fold enhancement in emission intensity. Our results establish MOFs as a crystalline molecular emitter material that can couple with plasmonic structures for energy exchange and transfer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...