Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(11): 20326-20338, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859146

RESUMO

How to compress and decompose the high-dimensional light field information in real time is still a challenging task for compressive light field display. Traditional iterative algorithms suffer from slow convergence speed and limited image quality. Therefore, a real-time decomposition technique for compressive light field display using multiplex correlations is proposed. Firstly, the iteration initial value of the algorithm is optimized, by utilizing the spatial correlations of pixel multiplex light fields, which significantly improves the convergence speed and reduces noise. Secondly, the iterative task of high-dimensional matrix in the non-negative matrix factorization (NMF) algorithm is divided into highly parallel linear iterative tasks. A stochastic gradient descent (SGD) optimizer and GPU are used to parallel compress and decompose the light fields. Thirdly, addresses of light field data are reordered using the sign distance field (SDF) transformation in sheared camera frustum space, making the addressing process of compression and decomposition more efficient. A rendering pipeline is constructed that renders the compressive light fields using 3D model data directly. For a light field containing 5 × 5 viewpoints and 1024 × 1024 × 2 pixels, only 2-3 iterations are needed to approach the optimal solution. The decomposition efficiency is increased by 15.24 times. The frame rate of decomposition exceeds 30 frames per second (fps). A compressive light field display system has been built to realize 3D display, verifying the feasibility of the technique.

2.
ACS Omega ; 9(8): 9216-9225, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38434853

RESUMO

Graphene nanosheets are highly valued in the biomedical field due to their potential applications in drug delivery, biological imaging, and biosensors. Their biological effects on mammalian cells may be influenced by cholesterols, which are crucial components in cell membranes that take part in many vital processes. Therefore, it is particularly important to investigate the effect of cholesterols on the transport mechanism of graphene nanosheets in the cell membrane as well as the final stable configuration of graphene, which may have an impact on cytotoxicity. In this paper, the molecular details of a graphene nanosheet interacting with a 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine (DPPC) membrane with cholesterols were studied using molecular dynamics simulations. Results showed that the structure of the graphene nanosheet transits from the cut-in state in a pure DPPC membrane to being sandwiched between two DPPC leaflets when cholesterols reach a certain concentration. The underlying mechanism showed that cholesterols are preferentially adsorbed on the graphene nanosheet, which causes a larger disturbance to the nearby DPPC tails and thus guides the graphene nanosheet into the core of lipid bilayers to form a sandwiched structure. Our results are helpful for understanding the fundamental interaction mechanism between the graphene nanosheet and cell membrane and to explore the potential applications of the graphene nanosheet in biomedical sciences.

3.
Opt Express ; 30(21): 38194-38207, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36258394

RESUMO

The production of holographic stereogram (HS) requires a huge amount of light field data. How to efficiently clip and render these image data remains a challenge in the field. This work focuses on the perspective clipping and fast rendering algorithm for light field images using RGBD data without explicit 3D reconstruction. The RGBD data is expanded to RGBDθ data by introducing a light cone for each point, which gives a new degree of freedom for light field image rendering. Using the light cone and perspective coherence, the visibility of 3D image points can be clipped programmatically. Optical imaging effects including mirror imaging and half mirror imaging effects of 3D images can also be rendered with the help of light cones during the light field rendering process. The perspective coherence is also used to accelerate the rendering, which has been shown to be on average 168% faster than traditional DIBR algorithms. A homemade holographic printing system was developed to make the HSs using the rendered light field images. The vivid 3D effects of the HS have validated the effectiveness of the proposed method. It can also be used in holographic dynamic 3D display, augmented reality, virtual reality, and other fields.

4.
Appl Opt ; 61(9): 2382-2390, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35333257

RESUMO

A simplified rendering method and system for retinal 3D projection using view and depth information is proposed and demonstrated. Instead of vertex calculations, image-based techniques, including sub-image shifting, image fusion, and hole filling, combined with the depth information, are used to render the multi-view images in a display space with specific discrete depth coordinates. A set of time-division multiplexing retinal 3D projection systems with dense viewpoints is built. A near-eye display of a 3D scene with complex occlusion relationships is realized using the rendering method and system. The eye box of the retinal projection system is enlarged, and the accommodation response of the eyes is evoked at the same time, which improves the visual experience. Rendering tests are carried out using simple and complex models, which proves the effectiveness of this method. Comparative experiments prove that the proposed retinal projection method can obtain high-performance 3D images comparable to the super multi-view display method while simplifying the rendering process. Additionally, the depth of field of the experimental system can cover most of the vergence accommodation conflict sensitive range of the human eye.


Assuntos
Imageamento Tridimensional , Retina , Acomodação Ocular , Humanos , Imageamento Tridimensional/métodos , Retina/diagnóstico por imagem
5.
Opt Lett ; 47(21): 5630-5633, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37219288

RESUMO

A fast light field (LF) image rendering method with controllable lighting mechanism is proposed and demonstrated. It solves the issue that previous image-based methods could not render and edit lighting effects for LF images. In contrast to previous methods, light cones and normal maps are defined and used to expand the RGBD images into RGBDNθ data, which gives more degrees of freedom to render LF images. Conjugate cameras are used to capture the RGBDN data, which simultaneously solve the pseudoscopic imaging problem. Perspective coherence is used to accelerate the RGBDNθ-based LF rendering process, which has been shown to be on average 30 times faster than the traditional per-viewpoint rendering (PVR) method. Vivid three-dimensional (3D) images with Lambertian reflection and non-Lambertian reflection effects including specular lighting and compound lighting have been reconstructed in 3D space using a homemade LF display system. The proposed method injects more flexibility into the rendering of LF images and can also be used in holographic display, augmented reality, virtual reality, and other fields.

6.
Soft Matter ; 17(17): 4632-4642, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33949610

RESUMO

The dynamics of polymer-nanoparticle (NP) mixtures, which involves multiple scales and system-specific variables, has posed a long-standing challenge on its theoretical description. In this paper, we construct a microscopic theory for polymer diffusion in mixtures based on a combination of the generalized Langevin equation, mode-coupling approach, and polymer physics ideas. The parameter-free theory has an explicit expression and remains tractable on a pair correlation level with system-specific equilibrium structures as input. Taking a minimal polymer-NP mixture as an example, our theory correctly captures the dependence of polymer diffusion on NP concentration and average interparticle distance. Importantly, the polymer diffusion exhibits a power law decay as the polymer length increases at dense NPs and/or a long chain, which marks the emergence of entanglement-like motion. The work provides a first-principles theoretical foundation to investigate dynamic problems in diverse polymer nanocomposites.

7.
Appl Opt ; 60(4): A306-A312, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33690382

RESUMO

To enhance the depth rendering ability of augmented reality (AR) display systems, a modulated moiré imaging technique is used to render the true three-dimensional (3D) images for AR display systems. 3D images with continuous depth information and large depth of field are rendered and superimposed on the real scene. The proposed AR system consists of a modulated moiré imaging subsystem and an optical combiner. The modulated moiré imaging subsystem employs modulated point light sources, a display device, and a microlens array to generate 3D images. A defocussing equal period moiré imaging structure is used, which gives a chance for the point light sources to modulate the depth position of 3D images continuously. The principles of the imaging system are deduced analytically. A custom-designed transparent off-axis spherical reflective lens is used as an optical combiner to project the 3D images into the real world. An experimental AR system that provides continuous 3D images with depth information ranging from 0.5 to 2.5 m is made to verify the feasibility of the proposed technique.

8.
Appl Opt ; 59(10): 3165-3173, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32400599

RESUMO

A method to enhance the performance of an integral imaging system is demonstrated using the time-multiplexed convergent backlight technique. The backlight increases the space bandwidth of the integral imaging system. As a result, the resolution, depth of field, and viewing angle of the integral imaging system are increased simultaneously. The cross-talk noise is also decreased without using any optical barrier. One part of the added space bandwidth comes from the optimized illumination. The other part is converted from the time bandwidth of the system by time-multiplexing. The time-multiplexed convergent backlight modulates the direction of the backlight in time sequence to illuminate the elemental images. Then, the elemental images synthesize the 3D images using a microlens array. An elemental images rendering method using a conjugate pinhole camera and pinhole projector model is designed to dynamically match the illumination direction. The rendering method eliminates the distortion and maximizes the viewing angle and viewing zone. A field programmable gate array (FPGA)-based controller is used to manage and synchronize the time sequence of the backlight and the display devices. Using this technique, high-performance 3D images are realized. Comparison experiments of the integral imaging system using diffused backlight and convergent backlight are performed. The results show the effectiveness of the proposed technique.

9.
Appl Opt ; 58(5): A234-A241, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30873982

RESUMO

The display bandwidth and display mechanism determine the performance of the three-dimensional (3D) display system. In this paper, a bandwidth-enhanced depth priority integral imaging (DPII) technique is proposed. Information transmission efficiency (ITE) defined as the output display bandwidth divided by the input display bandwidth is used to assess the II system. By analyzing the ITE, we find that only a part of the input display bandwidth is used efficiently to present the 3D image in the traditional DPII system. The DPII system sacrifices the ITE for depth enhancement. The low ITE that fundamentally limits the 3D performance of the DPII system is ascribed to the diffusing illumination mechanism of the display system. To enhance the 3D performance, a collimated illumination DPII system as a special case of band-limited diffusing illumination technique has been proposed and demonstrated first. The bandwidth and ITE of such a DPII system are increased. The depth of field (DOF) of the system is doubled. The resolution of the 3D image is increased to the level of the resolution priority II system without sacrificing the viewing angle. A more general case, band-limited illumination DPII system is also demonstrated. By modulating the divergence angle of the illumination system, the 3D image's resolution and DOF can be controlled. The bandwidth and ITE of the DPII system using band-limited illumination are also higher than that of the traditional DPII system. Experiments are presented to prove the bandwidth-enhanced mechanism of the DPII system.

10.
J Phys Chem B ; 123(12): 2636-2644, 2019 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-30830784

RESUMO

Complementary to endocytosis, cell-penetrating peptides (CPPs) at high concentrations can penetrate the cell membrane in a direct way, which further makes CPPs popular candidates for delivering therapeutic or diagnostic agents. Although featured as rapid uptake, the translocation efficiency and potential toxicity of the direct penetration are usually affected by cargoes, which is still unclear. Here, using coarse-grained molecular dynamics simulations, we show that the polyarginine (R8) peptides penetrate the membrane through a water pore in the membrane, and the transmembrane efficiency is improved by conjugating to small nanoparticles (NPs) with proper linkers. It can be attributed to both the extension of the lifetime of the water pore by the NPs and outward diffusion of negative lipids in the asymmetry membrane, which induces the surrounding R8-NP conjugates to the water pore before it is closed. The translocation efficiency is closely related to the length of the linkers, and it gets the maximum value when the length of the linkers is around half of the membrane thickness. Overlong linkers not only decrease the transmembrane efficiency because of the blockage of NPs in the water pore but may also cause cytotoxicity because of the unclosed water pore. The results provide insights into the internalization of CPPs and facilitate the design of CPP and drug conjugates with high efficiency and low toxicity.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Bicamadas Lipídicas/metabolismo , Nanopartículas/química , Peptídeos/metabolismo , Peptídeos Penetradores de Células/química , Dimiristoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Peptídeos/química , Fosfatidilserinas/química , Transporte Proteico
11.
Opt Express ; 26(10): 13301-13310, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29801355

RESUMO

The imaging principles and phenomena of integral imaging technique have been studied in detail using geometrical optics, wave optics, or light filed theory. However, most of the conclusions are only suit for the integral imaging systems using diffused illumination. In this work, a kind of twin imaging phenomenon and mechanism has been observed in a non-diffused illumination reflective integral imaging system. Interactive twin images including a real and a virtual 3D image of one object can be activated in the system. The imaging phenomenon is similar to the conjugate imaging effect of hologram, but it base on the refraction and reflection instead of diffraction. The imaging characteristics and mechanisms different from traditional integral imaging are deduced analytically. Thin film integral imaging systems with 80µm thickness have also been made to verify the imaging phenomenon. Vivid lighting interactive twin 3D images have been realized using a light-emitting diode (LED) light source. When the LED is moving, the twin 3D images are moving synchronously. This interesting phenomenon shows a good application prospect in interactive 3D display, argument reality, and security authentication.

12.
Sci Rep ; 3: 1486, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23508118

RESUMO

We demonstrate a technique to determine the Van der Waals radius of iodine atoms using Raman spectroscopy. The iodine diatomic molecules are diffused into the nano-scale channels of a zeolite single crystal. We found their polarized Raman spectroscopy, which corresponds to iodine molecule's vibrational motion along the direction of molecular axis, is significantly modified by the interaction between the iodine molecules and the rigid frame of the crystal's nano-channels. From the number of excitable vibration quantum states of the confined iodine molecules determined from Raman spectra and the size of the nano-channels, we estimate the iodine atomic radius to be 2.10±0.05 Å. It is the first time that atomic sizes, which are far beyond the optical diffraction limit, have be resolved optically using Raman spectroscopy with the help of nano-scale structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...