Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35514190

RESUMO

MOTIVATION: Accurate identification of proteins interacted with drugs helps reduce the time and cost of drug development. Most of previous methods focused on integrating multisource data about drugs and proteins for predicting drug-target interactions (DTIs). There are both similarity connection and interaction connection between two drugs, and these connections reflect their relationships from different perspectives. Similarly, two proteins have various connections from multiple perspectives. However, most of previous methods failed to deeply integrate these connections. In addition, multiple drug-protein heterogeneous networks can be constructed based on multiple kinds of connections. The diverse topological structures of these networks are still not exploited completely. RESULTS: We propose a novel model to extract and integrate multi-type neighbor topology information, diverse similarities and interactions related to drugs and proteins. Firstly, multiple drug-protein heterogeneous networks are constructed according to multiple kinds of connections among drugs and those among proteins. The multi-type neighbor node sequences of a drug node (or a protein node) are formed by random walks on each network and they reflect the hidden neighbor topological structure of the node. Secondly, a module based on graph neural network (GNN) is proposed to learn the multi-type neighbor topologies of each node. We propose attention mechanisms at neighbor node level and at neighbor type level to learn more informative neighbor nodes and neighbor types. A network-level attention is also designed to enhance the context dependency among multiple neighbor topologies of a pair of drug and protein nodes. Finally, the attribute embedding of the drug-protein pair is formulated by a proposed embedding strategy, and the embedding covers the similarities and interactions about the pair. A module based on three-dimensional convolutional neural networks (CNN) is constructed to deeply integrate pairwise attributes. Extensive experiments have been performed and the results indicate GCDTI outperforms several state-of-the-art prediction methods. The recall rate estimation over the top-ranked candidates and case studies on 5 drugs further demonstrate GCDTI's ability in discovering potential drug-protein interactions.


Assuntos
Algoritmos , Redes Neurais de Computação , Desenvolvimento de Medicamentos , Interações Medicamentosas , Aprendizagem
2.
Brief Bioinform ; 23(2)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35108362

RESUMO

MOTIVATION: Effective computational methods to predict drug-protein interactions (DPIs) are vital for drug discovery in reducing the time and cost of drug development. Recent DPI prediction methods mainly exploit graph data composed of multiple kinds of connections among drugs and proteins. Each node in the graph usually has topological structures with multiple scales formed by its first-order neighbors and multi-order neighbors. However, most of the previous methods do not consider the topological structures of multi-order neighbors. In addition, deep integration of the multi-modality similarities of drugs and proteins is also a challenging task. RESULTS: We propose a model called ALDPI to adaptively learn the multi-scale topologies and multi-modality similarities with various significance levels. We first construct a drug-protein heterogeneous graph, which is composed of the interactions and the similarities with multiple modalities among drugs and proteins. An adaptive graph learning module is then designed to learn important kinds of connections in heterogeneous graph and generate new topology graphs. A module based on graph convolutional autoencoders is established to learn multiple representations, which imply the node attributes and multiple-scale topologies composed of one-order and multi-order neighbors, respectively. We also design an attention mechanism at neighbor topology level to distinguish the importance of these representations. Finally, since each similarity modality has its specific features, we construct a multi-layer convolutional neural network-based module to learn and fuse multi-modality features to obtain the attribute representation of each drug-protein node pair. Comprehensive experimental results show ALDPI's superior performance over six state-of-the-art methods. The results of recall rates of top-ranked candidates and case studies on five drugs further demonstrate the ability of ALDPI to discover potential drug-related protein candidates. CONTACT: zhang@hlju.edu.cn.


Assuntos
Algoritmos , Redes Neurais de Computação , Desenvolvimento de Medicamentos/métodos , Interações Medicamentosas , Proteínas
3.
IEEE J Biomed Health Inform ; 26(4): 1891-1902, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34673498

RESUMO

Identification of interactions between drugs and target proteins plays a critical role not only in drug discovery but also in drug repositioning. Deep integration of inter-connections and intra-similarities between heterogeneous multi-source data about drugs and targets, however, is a challenging issue. We propose a drug-target interaction (DTI) prediction model by learning from drug and protein related multi-scale attributes and global topology formed by heterogeneous connections. A drug-protein-disease heterogeneous network (RPD-Net) is firstly constructed to associate diverse similarities, interactions and associations across nodes. Secondly, we propose a multi-scale pairwise deep representation learning module consisting of a new embedding strategy to integrate diverse inter-relations and intra-relations, and dilation convolutions for multi-scale deep representation extraction. A global topology learning module is proposed which is composed of strategy based on non-negative matrix factorization (NMF) to extract topology from RPD-Net, and a new relational-level attention mechanism for discriminative topology embedding. Experimental results using public dataset demonstrate improved performance over state-of-the-art methods and contributions of our major innovations. Evaluation results by top k recall rates and case studies on five drugs further show the effectiveness of our method in retrieving potential target candidates for drugs.


Assuntos
Algoritmos , Redes Neurais de Computação , Desenvolvimento de Medicamentos/métodos , Reposicionamento de Medicamentos , Humanos , Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...