Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biodivers ; 21(4): e202301898, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369765

RESUMO

Polyoxometalates (POMs) are promising inorganic drug candidates for cancer chemotherapy. They are becoming attractive because of their easy accessibility and low cost. Herein, we report the synthesis and antitumor activity studies of four Lindqvist-type POMs with mixed-addenda atoms Na2[V4W2O16{(OCH2)3CR}] (R=-CH2OH, -CH3, -CH2CH3) and (Bu4N)2[V3W3{(OCH2)3CH2OOCCH2CH3}]. Compared with the current clinical applied antitumor drug 5-fluorouracil (5-FU) or Gemcitabine, analysis of MTT/CCK-8 assay, colony formation and wound healing assay revealed that the {V4W2} POMs had acceptable cytotoxicity in normal cells (293T) and significant inhibitory effects on cell proliferation and migration in three human tumor cell lines: human lung carcinoma cells (A549), human cervical carcinoma cells (HeLa), and human breast cancer cells (MCF-7). Interestingly, among the POMs analyzed, the therapeutic index (TI) of the {V4W2} POM with R= -CH2OH was relatively the most satisfactory. Thus, it was subsequently used for further studies. Flow cytometry analysis showed it prompted cellular apoptosis rate. qRT-PCR and Western blotting analysis indicated that multiple cell death pathways were activated including apoptosis, autophagy, necroptosis and pyroptosis during the POM-mediated antitumor process. In conclusion, our study shows that the polyoxotungstovanadate has great potential to be developed into a broad-spectrum antitumor chemotherapeutic drug.


Assuntos
Antineoplásicos , Carcinoma , Humanos , Antineoplásicos/farmacologia , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Carcinoma/tratamento farmacológico
2.
Viruses ; 16(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38399989

RESUMO

The coronavirus disease 2019 (COVID-19) global pandemic, caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), has been marked by severe cases demonstrating a "cytokine storm", an upsurge of pro-inflammatory cytokines in the bloodstream. NLRP3 inflammasomes, integral to the innate immune system, are speculated to be activated by SARS-CoV-2 within host cells. This review investigates the potential correlation between NLRP3 inflammasomes and COVID-19, exploring the cellular and molecular mechanisms through which SARS-CoV-2 triggers their activation. Furthermore, promising strategies targeting NLRP3 inflammasomes are proposed to mitigate the excessive inflammatory response provoked by SARS-CoV-2 infection. By synthesizing existing studies, this paper offers insights into NLRP3 as a therapeutic target, elucidating the interplay between COVID-19 and its pathophysiology. It serves as a valuable reference for future clinical approaches in addressing COVID-19 by targeting NLRP3, thus providing potential avenues for therapeutic intervention.


Assuntos
COVID-19 , Humanos , Citocinas , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , SARS-CoV-2/fisiologia
3.
Lab Invest ; 104(2): 100298, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38008182

RESUMO

Enterovirus A71 (EV-A71) is one of the major causative agents of hand, foot, and mouth disease (HFMD) that majorly affects children. Most of the time, HFMD is a mild disease but can progress to severe complications, such as meningitis, brain stem encephalitis, acute flaccid paralysis, and even death. HFMD caused by EV-A71 has emerged as an acutely infectious disease of highly pathogenic potential in the Asia-Pacific region. In this review, we introduced the properties and life cycle of EV-A71, and the pathogenesis and the pathophysiology of EV-A71 infection, including tissue tropism and host range of virus infection, the diseases caused by the virus, as well as the genes and host cell immune mechanisms of major diseases caused by enterovirus 71 (EV-A71) infection, such as encephalitis and neurologic pulmonary edema. At the same time, clinicopathologic characteristics of EV-A71 infection were introduced. There is currently no specific medication for EV-A71 infection, highlighting the urgency and significance of developing suitable anti-EV-A71 agents. This overview also summarizes the targets of existing anti-EV-A71 agents, including virus entry, translation, polyprotein processing, replication, assembly and release; interferons; interleukins; the mitogen-activated protein kinase, phosphatidylinositol 3-kinase, and protein kinase B signaling pathways; the oxidative stress pathway; the ubiquitin-proteasome system; and so on. Furthermore, it overviews the effects of natural products, monoclonal antibodies, and RNA interference against EV-A71. It also discusses issues limiting the research of antiviral drugs. This review is a systematic and comprehensive summary of the mechanism and pathological characteristics of EV-A71 infection, the latest progress of existing anti-EV-A71 agents. It would provide better understanding and guidance for the research and application of EV-A71 infection and antiviral inhibitors.


Assuntos
Encefalite , Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Criança , Humanos , Enterovirus Humano A/fisiologia , Infecções por Enterovirus/tratamento farmacológico , Antivirais/farmacologia , Antivirais/uso terapêutico
4.
Heliyon ; 9(11): e21307, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027859

RESUMO

N6-methyladenosine (m6A) methylation of human immunodeficiency virus type 1 (HIV-1) RNA regulates viral replication, and the m6A of host RNA is affected by HIV-1 infection, but its global pattern and function are still unclear. In this study, we report that the number and position of m6A peaks in huge genes of human microglial HMC3 cells were modulated by a single cycle HIV-1 pseudotyped with VSV-G envelope glycoprotein infection using methylated RNA immunoprecipitation sequencing (MeRIP-seq). A conjoint analysis of MeRIP-seq and high-throughput sequencing for mRNA (RNA-seq) explored four groups of clearly classified genes, including 45 hyper-up (m6A-mRNA), 45 hyper-down, 120 hypo-up, and 54 hypo-down genes, in HIV-1 infected cells compared to uninfected ones. KEGG pathway analysis showed that these genes were mainly enriched in the Wnt and TNF signaling pathway, and cytokine-cytokine receptor interaction, which might be related to the immune response in HMC3 cells. And some of these genes might be associated with the pathway of axon guidance and neuroactive ligan-receptor interaction, which affect the neuronal state. However, the cognitive disorders caused by HIV-1 is associated with inflammatory changes that have not yet been well clarified. Furthermore, we confirmed the expression and m6A levels of four genes using RT-PCR and MeRIP-qPCR. Similar to the sequencing results, the expressions of these genes were significantly upregulated by HIV-1 infection. And the m6A level of IL-6 was downregulated, and those of HLA-B, CFB, and OLR1 were upregulated. These results suggest that HIV-1-induced changes in gene expression may be achieved through the regulation of methylation. Our study revealed the global m6A methylation and gene expression patterns under HIV-1 infection in human microglia, which might provide clues for understanding the interaction between HIV-1 and host cells and the cognitive disorders caused by HIV-1.

5.
Front Cell Infect Microbiol ; 13: 1218039, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37360532

RESUMO

Corona Virus Disease 2019 (COVID-19) continues to be a burden for human health since its outbreak in Wuhan, China in December 2019. Recently, the emergence of new variants of concerns (VOCs) is challenging for vaccines and drugs efficiency. In severe cases, SARS-CoV-2 provokes inappropriate hyperinflammatory immune responses leading to acute respiratory distress syndrome (ARDS) and even death. This process is regulated by inflammasomes which are activated after binding of the viral spike (S) protein to cellular angiotensin-converting enzyme 2 (ACE2) receptor and triggers innate immune responses. Therefore, the formation of "cytokines storm" leads to tissue damage and organ failure. NOD-like receptor family pyrin domain containing 3 (NLRP3) is the best studied inflammasome known to be activated during SARS-CoV-2 infection. However, some studies suggest that SARS-CoV-2 infection is associated with other inflammasomes as well; such as NLRP1, absent in melanoma-2 (AIM-2), caspase-4 and -8 which were mostly found during dsRNA virus or bacteria infection. Multiple inflammasome inhibitors that exist for other non-infectious diseases have the potential to be used to treat severe SARS-CoV-2 complications. Some of them have showed quite encouraging results during pre- and clinical trials. Nevertheless, further studies are in need for the understanding and targeting of SARS-Cov-2-induced inflammasomes; mostly an update of its role during the new VOCs infection is necessary. Hence, this review highlights all reported inflammasomes involved in SARS-CoV-2 infection and their potential inhibitors including NLRP3- and Gasdermin D (GSDMD)-inhibitors. Further strategies such as immunomodulators and siRNA are also discussed. As highly related to COVID-19 severe cases, developing inflammasome inhibitors holds a promise to treat severe COVID-19 syndrome effectively and reduce mortality.


Assuntos
COVID-19 , Inflamassomos , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , SARS-CoV-2/fisiologia , Citocinas/metabolismo
6.
Eur J Pharm Sci ; 186: 106445, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37044201

RESUMO

A series of 2-Benzoxyl-Phenylpyridine derivatives were evaluated for their potential antiviral activities against EV71. The preliminary assays indicated that some of these compounds exhibited excellent antiviral effects on EV71, they could effectively inhibit virus-induced cytopathic effects (CPEs), reduce progeny viral yields, and present similar or better antiviral activities compared to the positive control drug ribavirin. Among these derivatives, compounds WY7, WY13 and WY14 showed the most potency against EV71. Investigation of the underlying mechanism of action revealed that these compounds target EV71 replication in cells post infection, they could profoundly inhibit viral RNA replication and protein synthesis, and inhibit virus-induced cell apoptosis. Further experiments demonstrated that compound WY7 potently inhibited the activity of the EV71 3C protease (3Cpro), and to some extent, it affected the activity of 3D polymerase (3Dpol), thus blocking viral replication, but not the activity of the 2A proteinase (2Apro). Modeling of the molecular binding of the 3Cpro-WY7 complex revealed that compound WY7 was predicted to insert into the substrate-binding pocket of EV71 3Cpro, blocking substrate recognition and thereby inhibiting EV71 3Cpro activity. These results indicate that these compounds might be feasible therapeutic agents against EV71 infection and that these compounds may provide promising lead scaffolds for the further design and synthesis of potential antiviral agents.


Assuntos
Antivirais , Replicação Viral , Antivirais/química
7.
Nutrients ; 15(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36904097

RESUMO

Diabetes mellitus is a complex disorder characterized by insufficient insulin production or insulin resistance, which results in a lifelong dependence on glucose-lowering drugs for almost all patients. During the fight with diabetes, researchers are always thinking about what characteristics the ideal hypoglycemic drugs should have. From the point of view of the drugs, they should maintain effective control of blood sugar, have a very low risk of hypoglycemia, not increase or decrease body weight, improve ß-cell function, and delay disease progression. Recently, the advent of oral peptide drugs, such as semaglutide, brings exciting hope to patients with chronic diabetes. Legumes, as an excellent source of protein, peptides, and phytochemicals, have played significant roles in human health throughout human history. Some legume-derived peptides with encouraging anti-diabetic potential have been gradually reported over the last two decades. Their hypoglycemic mechanisms have also been clarified at some classic diabetes treatment targets, such as the insulin receptor signaling pathway or other related pathways involved in the progress of diabetes, and key enzymes including α-amylase, α-glucosidase, and dipeptidyl peptidase-IV (DPP-4). This review summarizes the anti-diabetic activities and mechanisms of peptides from legumes and discusses the prospects of these peptide-based drugs in type 2 diabetes (T2D) management.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Fabaceae , Humanos , Inibidores da Dipeptidil Peptidase IV/química , Hipoglicemiantes/uso terapêutico , Peptídeos/química
8.
Viruses ; 15(3)2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36992493

RESUMO

Enterovirus A71, a non-enveloped single-stranded (+) RNA virus, enters host cells through three stages: attachment, endocytosis and uncoating. In recent years, receptors/co-receptors anchored on the host cell membrane and involved in this process have been continuously identified. Among these, hSCARB-2 was the first receptor revealed to specifically bind to a definite site of the EV-A71 viral capsid and plays an indispensable role during viral entry. It actually acts as the main receptor due to its ability to recognize all EV-A71 strains. In addition, PSGL-1 is the second EV-A71 receptor discovered. Unlike hSCARB-2, PSGL-1 binding is strain-specific; only 20% of EV-A71 strains isolated to date are able to recognize and bind it. Some other receptors, such as sialylated glycan, Anx 2, HS, HSP90, vimentin, nucleolin and fibronectin, were discovered successively and considered as "co-receptors" because, without hSCARB-2 or PSGL-1, they are not able to mediate entry. For cypA, prohibitin and hWARS, whether they belong to the category of receptors or of co-receptors still needs further investigation. In fact, they have shown to exhibit an hSCARB-2-independent entry. All this information has gradually enriched our knowledge of EV-A71's early stages of infection. In addition to the availability of receptors/co-receptors for EV-A71 on host cells, the complex interaction between the virus and host proteins and various intracellular signaling pathways that are intricately connected to each other is critical for a successful EV-A71 invasion and for escaping the attack of the immune system. However, a lot remains unknown about the EV-A71 entry process. Nevertheless, researchers have been continuously interested in developing EV-A71 entry inhibitors, as this study area offers a large number of targets. To date, important progress has been made toward the development of several inhibitors targeting: receptors/co-receptors, including their soluble forms and chemically designed compounds; virus capsids, such as capsid inhibitors designed on the VP1 capsid; compounds potentially interfering with related signaling pathways, such as MAPK-, IFN- and ATR-inhibitors; and other strategies, such as siRNA and monoclonal antibodies targeting entry. The present review summarizes these latest studies, which are undoubtedly of great significance in developing a novel therapeutic approach against EV-A71.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Humanos , Enterovirus Humano A/genética , Enterovirus/metabolismo , Proteínas do Capsídeo/genética , Capsídeo/metabolismo
9.
Front Oncol ; 12: 812663, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338737

RESUMO

Background: Hepatocellular carcinoma (HCC) is one of the most leading causes of cancer death worldwide. The 5-year survival rate of HCC patients remains low due to the lack of early-stage symptoms. Human complement factor H-related protein 4 (CFHR4) is a critical gene that belongs to the factor H family of plasma glycoproteins, which has not been linked to HCC development. The correlations between CFHR4 and prognosis and tumor-infiltrating lymphocytes in HCC are yet unknown. The present study demonstrated the involvement of CFHR4 in HCC via data mining approaches. Results: A total of 18 upregulated and 67 down-regulated differentially expressed genes (DEGs) were identified. Importantly, CFHR4, which was screened from DEGs, was shown to express at a lower level in HCC tumor tissue than normal tissues. Western blotting (WB), immunohistochemical (IHC) and quantitative reverse transcription PCR (qRT-PCR) experiments of clinical samples further validated CFHR4 was aberrantly expressed in HCC patients; Data from TCGA showed that CFHR4 was inversely correlated with a cancer family history, histological grade, tumor node metastasis (TNM) stage, and serum AFP level of HCC patients; Univariate and multivariate analyses revealed that low expression of CFHR4 was an independent predictive marker in patients with HCC; Kaplan-Meier analysis showed that the lower expression of CFHR4 was significantly associated with the progression of HCC and poor prognosis rates. Furthermore, TIMER analysis indicated that CFHR4 expression levels had correlations with infiltrating levels of immune cells in HCC. Conclusion: CFHR4 expression was low in HCC and was significantly related to the poor prognosis of HCC and the level of immune infiltration. CFHR4 played important roles in regulating the initiation and progression of HCC and could be a potential biomarker for the diagnosis and prognosis of HCC. Methods: The expression of CFHR4 was analyzed by GEO and TCGA-LIHC database and verified by WB and IHC assay. The biological function of CFHR4 was performed by GO and KEGG enrichment analysis, and the genomic alteration of CFHR4 was investigated by cBioPortal database.The correlation between CFHR4 expression and clinical relevance was evaluated through Cox proportional hazards model, and the correlation between CFHR4 expression and tumor immune infiltrates were studied by TIMER database.

10.
Front Chem ; 10: 841151, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372278

RESUMO

A class of iodobenzoyldiazenido-functionalized POMs (TBA)3 [Mo6O18(=N=NCOAr)] (Ar = Ph-o-I (1); Ph-m-I (2); Ph-p-I (3); Ph-3,4-I2 (4); Ph-2,3,5-I3 (5) (TBA = tetrabutylammonium) were prepared via the refluxing reaction of α-octamolybdates, DCC, and corresponding hydrazides in dry acetonitrile. Their structures were determined by Fourier-transform infrared spectroscopy, ultraviolet-visible spectra, X-ray photoelectron spectroscopy, hydrogen-1 nuclear magnetic resonance, and high-resolution mass spectrometry. Research on the biological activity of title compounds shows that L3, L5, 3, and 5 demonstrate potent inhibitory activity against coxsackievirus B3 and low in vitro cytotoxic activity against Hep-2 cell lines. The covalent linkage between the iodobenzoyldiazenido components and POMs can enhance the molecular inhibitory efficiency of iodobenzohydrazides.

11.
Biochem Biophys Res Commun ; 584: 46-52, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34768081

RESUMO

Efavirenz (EFV) is a non-nucleoside reverse transcriptase inhibitor (NNRTI), which is widely used for anti-HIV-1. Evidences revealed that several central nervous system side effects could be observed in mice and patients with administration of EFV. However, the detailed mechanisms are still unknown. In this study, we investigated the effects of long-term EFV treatment on cognitive functions and the potential underlying mechanisms in mice. We maintained C57BL/6 mice aged 2 months with treatment containing 40 or 80 mg/kg/day EFV for 5 months, while control group treated with saline. The cognitive functions were evaluated by novel object recognition test, Barnes maze test and Morris water maze. The results showed significant short-term memory impairment in 40 and 80 mg/kg groups, and notable spatial learning and memory impairments in 80 mg/kg group, without any spontaneous activity alteration. Moreover, EFV induced impairments in dendritic integrity and synaptic plasticity in hippocampus. Furthermore, Significant increases were observed in the expression levels of pro-IL-1ß, a similar tendency of TNF-α and phosphorylation of p65 of the 80 mg/kg group compared with control group. These results imply that long-term EFV treatment causes synaptic dysfunction resulting in cognitive deficits, which might be induced by the enhanced pro-inflammatory cytokines IL-1ß and TNF-α via activating NF-κB pathway.


Assuntos
Alcinos/toxicidade , Benzoxazinas/toxicidade , Cognição/efeitos dos fármacos , Disfunção Cognitiva/fisiopatologia , Ciclopropanos/toxicidade , Transtornos da Memória/fisiopatologia , Doenças Neuroinflamatórias/fisiopatologia , Animais , Cognição/fisiologia , Disfunção Cognitiva/induzido quimicamente , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/induzido quimicamente , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias/induzido quimicamente , Inibidores da Transcriptase Reversa/toxicidade , Aprendizagem Espacial/efeitos dos fármacos , Aprendizagem Espacial/fisiologia , Sinapsinas/metabolismo , Sinaptofisina/metabolismo , Sinaptotagmina I/metabolismo , Fatores de Tempo
12.
Stem Cell Res Ther ; 12(1): 412, 2021 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-34275494

RESUMO

Chondromalacia patellae (CMP), also known as runner's knee, typically occurs in young patients, which is characterized by anterior knee pain (AKP) that is associated with visible changes in patellar cartilage. The initial pathological changes include cartilage softening, swelling, and edema. CMP is caused by several factors, including trauma, increased cartilage vulnerability, patellofemoral instability, bony anatomic variations, abnormal patellar kinematics, and occupation hazards. CMP may be reversible or may progress to develop patellofemoral osteoarthritis. Quadriceps wasting, patellofemoral crepitus, and effusion are obvious clinical indications. Additionally, radiological examinations are also necessary for diagnosis. Magnetic resonance imaging (MRI) is a non-invasive diagnostic method, which holds a promise in having the unique ability to potentially identify cartilage lesions. Modalities are conventionally proposed to treat cartilage lesions in the PF joint, but none have emerged as a gold standard, neither to alleviated symptoms and function nor to prevent OA degeneration. Recently, researchers have been focused on cartilage-targeted therapy. Various efforts including cell therapy and tissue emerge for cartilage regeneration exhibit as the promising regime, especially in the application of mesenchymal stem cells (MSCs). Intra-articular injections of variously sourced MSC are found safe and beneficial for treating CMP with improved clinical parameters, less invasiveness, symptomatic relief, and reduced inflammation. The mechanism of MSC injection remains further clinical investigation and is tremendously promising for CMP treatment. In this short review, etiology, MRI diagnosis, and treatment in CMP, especially the treatment of the cell-based therapies, are reviewed.


Assuntos
Cartilagem Articular , Condromalacia da Patela , Osteoartrite do Joelho , Cartilagem Articular/diagnóstico por imagem , Terapia Baseada em Transplante de Células e Tecidos , Condromalacia da Patela/diagnóstico por imagem , Condromalacia da Patela/genética , Condromalacia da Patela/terapia , Humanos , Articulação do Joelho/diagnóstico por imagem , Imageamento por Ressonância Magnética , Patela
13.
Virol J ; 17(1): 173, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33176821

RESUMO

With CA16, enterovirus-71 is the causative agent of hand foot and mouth disease (HFMD) which occurs mostly in children under 5 years-old and responsible of several outbreaks since a decade. Most of the time, HFMD is a mild disease but can progress to severe complications such as meningitis, brain stem encephalitis, acute flaccid paralysis (AFP) and even death; EV71 has been identified in all severe cases. Therefore, it is actually one of the most public health issues that threatens children's life. [Formula: see text] is a protease which plays important functions in EV71 infection. To date, a lot of [Formula: see text] inhibitors have been tested but none of them has been approved yet. Therefore, a drug screening is still an utmost importance in order to treat and/or prevent EV71 infections. This work highlights the EV71 life cycle, [Formula: see text] functions and [Formula: see text] inhibitors recently screened. It permits to well understand all mechanisms about [Formula: see text] and consequently allow further development of drugs targeting [Formula: see text]. Thus, this review is helpful for screening of more new [Formula: see text] inhibitors or for designing analogues of well known [Formula: see text] inhibitors in order to improve its antiviral activity.


Assuntos
Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Enterovirus Humano A/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Doença de Mão, Pé e Boca/tratamento farmacológico , RNA Viral/antagonistas & inibidores , Animais , Antivirais/isolamento & purificação , Criança , Avaliação Pré-Clínica de Medicamentos/tendências , Enterovirus Humano A/enzimologia , Inibidores Enzimáticos/isolamento & purificação , Doença de Mão, Pé e Boca/complicações , Doença de Mão, Pé e Boca/virologia , Humanos , Camundongos , Inibidores da Síntese de Ácido Nucleico/farmacologia , Filogenia
14.
Molecules ; 25(6)2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204528

RESUMO

Coxsackievirus B3 (CVB3) is the most common cause of acute and chronic viral myocarditis, primarily in children, while human adenovirus infections represent a significant cause of morbidity and mortality worldwide, in people of all ages. A series of novel 2-benzoxyl-phenylpyridine derivatives were evaluated for their potential antiviral activities against CVB3 and adenovirus type 7 (ADV7). Preliminary assays indicated that some of these compounds exhibited excellent antiviral effects on both CVB3 and ADV7 viruses; they could effectively inhibit virus-induced cytopathic effects, reduce viral progeny yields, and had similar or superior antiviral activities compared with the control drug, ribavirin. Further, these compounds targeted the early stages of CVB3 replication in cells, including viral RNA replication and protein synthesis, rather than inactivating the virus directly, inhibiting virus adsorption/entry, or affecting viral release from cells. Our data demonstrate that the tested 2-benzoxyl-phenylpyridine derivatives are effective inhibitors of CVB3 and ADV7, raising the possibility that these compounds might be feasible candidates for anti-viral agents.


Assuntos
Antivirais/síntese química , Enterovirus Humano B/fisiologia , Piridinas/síntese química , Adenovírus Humanos/efeitos dos fármacos , Antivirais/química , Antivirais/farmacologia , Enterovirus Humano B/efeitos dos fármacos , Células HeLa , Humanos , Estrutura Molecular , Piridinas/química , Piridinas/farmacologia , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
15.
J Inorg Biochem ; 193: 130-132, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30711559

RESUMO

A new strategy to construct polyoxovanadate hybrids incorporating amino acid esters in mild conditions was presented in this paper. These new hybrids were not only structurally determined by Single Crystal X-Ray diffraction, but also exhibited higher antitumor activities against laryngeal carcinoma, rhabdomyoma, and breast adenocarcinoma tumor cells compared with the traditional commercial medicine 5-fluorouracil. These results would provide a promising lead scaffold for further design and synthesis of potential anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Vanadatos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Fluoruracila/farmacologia , Humanos , Vanadatos/síntese química , Vanadatos/química
16.
Genes Genomics ; 41(3): 343-357, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30499052

RESUMO

BACKGROUND: Enterovirus 71 (EV71) is the main pathogen of hand-foot-mouth disease (HFMD) and sometimes causes several neurological complications. However, the underlying mechanism of the host response to the virus infection remains unclear. OBJECTIVE: To reveal the cell-specific transcriptional response of cultured RD cells following infection with EV71, and better understand the molecular mechanisms of virus-host interactions. METHODS: The RD cells were infected with or without EV71 for 24 h, and then transcriptome sequencing and qRT-PCR were performed to analyze the transcriptome difference of functional genes. RESULTS: More than 15000 genes were identified in transcriptome sequencing. In comparison with uninfected RD cells, 329 DEGs were identified in cells infected with EV71. GO and KEGG pathway enrichment analysis showed that most of the DEGs were related to DNA binding, transcriptional regulation, immune response and inflammatory response, apoptosis inducing factors and enriched in JAK-STAT and MAPK signaling pathways. TXNIP (thioredoxin-interacting protein) gene was further demonstrated to play an important role participating in cellular apoptosis induced by EV71, and the apoptosis and death mediated by TXNIP during EV71 infection was triggered by viral 2A protease (2Apro), not 3C protease (3Cpro). CONCLUSION: Our study demonstrated that RD cells have a significant response to EV71 infection, including immune response and apoptosis. 2Apro might be a key inducer relative to the cellular apoptosis and death mediated by TXNIP during EV71 infection. These data would contribute to preferably understand the process at the molecular level and provide theoretical foundation for diagnosis and treatment of EV71-related diseases.


Assuntos
Apoptose , Proteínas de Transporte/genética , Cisteína Endopeptidases/genética , Infecções por Enterovirus/genética , Transcriptoma , Proteínas Virais/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Cisteína Endopeptidases/metabolismo , Enterovirus Humano A/enzimologia , Enterovirus Humano A/patogenicidade , Infecções por Enterovirus/metabolismo , Infecções por Enterovirus/virologia , Interações Hospedeiro-Patógeno , Humanos , Proteínas Virais/metabolismo
17.
Virol J ; 15(1): 116, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30064445

RESUMO

BACKGROUND: Enterovirus 71 (EV71) is one of the major causative agents of hand, foot, and mouth disease (HFMD), which is sometimes associated with severe central nervous system disease in children. There is currently no specific medication for EV71 infection. Quercetin, one of the most widely distributed flavonoids in plants, has been demonstrated to inhibit various viral infections. However, investigation of the anti-EV71 mechanism has not been reported to date. METHODS: The anti-EV71 activity of quercetin was evaluated by phenotype screening, determining the cytopathic effect (CPE) and EV71-induced cells apoptosis. The effects on EV71 replication were evaluated further by determining virus yield, viral RNA synthesis and protein expression, respectively. The mechanism of action against EV71 was determined from the effective stage and time-of-addition assays. The possible inhibitory functions of quercetin via viral 2Apro, 3Cpro or 3Dpol were tested. The interaction between EV71 3Cpro and quercetin was predicted and calculated by molecular docking. RESULTS: Quercetin inhibited EV71-mediated cytopathogenic effects, reduced EV71 progeny yields, and prevented EV71-induced apoptosis with low cytotoxicity. Investigation of the underlying mechanism of action revealed that quercetin exhibited a preventive effect against EV71 infection and inhibited viral adsorption. Moreover, quercetin mediated its powerful therapeutic effects primarily by blocking the early post-attachment stage of viral infection. Further experiments demonstrated that quercetin potently inhibited the activity of the EV71 protease, 3Cpro, blocking viral replication, but not the activity of the protease, 2Apro, or the RNA polymerase, 3Dpol. Modeling of the molecular binding of the 3Cpro-quercetin complex revealed that quercetin was predicted to insert into the substrate-binding pocket of EV71 3Cpro, blocking substrate recognition and thereby inhibiting EV71 3Cpro activity. CONCLUSIONS: Quercetin can effectively prevent EV71-induced cell injury with low toxicity to host cells. Quercetin may act in more than one way to deter viral infection, exhibiting some preventive and a powerful therapeutic effect against EV71. Further, quercetin potently inhibits EV71 3Cpro activity, thereby blocking EV71 replication.


Assuntos
Enterovirus Humano A/efeitos dos fármacos , Infecções por Enterovirus/prevenção & controle , Quercetina/farmacologia , Proteínas Virais/antagonistas & inibidores , Proteases Virais 3C , Animais , Antivirais/química , Antivirais/farmacologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Cisteína Endopeptidases/metabolismo , Efeito Citopatogênico Viral/efeitos dos fármacos , Enterovirus Humano A/fisiologia , Infecções por Enterovirus/virologia , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Quercetina/química , Quercetina/metabolismo , RNA Viral/biossíntese , RNA Viral/efeitos dos fármacos , Células Vero , Proteínas Virais/biossíntese , Proteínas Virais/efeitos dos fármacos , Proteínas Virais/metabolismo , Ligação Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
18.
Virol Sin ; 32(6): 454-464, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29280054

RESUMO

Chronic hepatitis B infection is caused by hepatitis B virus (HBV) and a total cure is yet to be achieved. The viral covalently closed circular DNA (cccDNA) is the key to establish a persistent infection within hepatocytes. Current antiviral strategies have no effect on the pre-existing cccDNA reservoir. Therefore, the study of the molecular mechanism of cccDNA formation is becoming a major focus of HBV research. This review summarizes the current advances in cccDNA molecular biology and the latest studies on the elimination or inactivation of cccDNA, including three major areas: (1) epigenetic regulation of cccDNA by HBV X protein, (2) immune-mediated degradation, and (3) genome-editing nucleases. All these aspects provide clues on how to finally attain a cure for chronic hepatitis B infection.


Assuntos
DNA Circular/metabolismo , DNA Viral/metabolismo , Vírus da Hepatite B/crescimento & desenvolvimento , Vírus da Hepatite B/genética , Hepatite B Crônica/virologia , Hepatócitos/virologia , DNA Circular/genética , DNA Viral/genética , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno , Transativadores/metabolismo , Proteínas Virais Reguladoras e Acessórias
19.
Life Sci ; 191: 104-110, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28970114

RESUMO

AIMS: Alpha-fetoprotein (AFP) is regarded as a diagnostic and prognostic biomarker and a potential therapeutic target for hepatocellular carcinoma (HCC). However, the regulation of AFP expression in HCC remains poorly understood. This study aimed to investigate the mechanism by which AFP expression is regulated by p55PIK, an isoform of PI3K. MAIN METHODS: Human HCC cell lines (HepG2 and Huh-7) were treated with p55PIK specific competitive inhibitor or shRNA, or p55PIK overexpression vector, in the absence or presence of NF-κB inhibitor PDTC. AFP expression was detected by quantitative real-time PCR and Western blotting. NF-κB responsive elements in AFP enhancer region were characterized by luciferase reporter assay. KEY FINDINGS: p55PIK significantly stimulated the expression of AFP by activating NF-κB signaling pathway in HCC cells. Furthermore, two NF-κB binding sites in AFP enhancer region were identified to be primarily responsible for p55PIK mediated upregulation of AFP expression. SIGNIFICANCE: p55PIK/NF-κB signaling plays an important role in the upregulation of AFP expression in HCC.


Assuntos
Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , alfa-Fetoproteínas/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Regulação para Cima
20.
Bing Du Xue Bao ; 33(1): 24-35, 2017 Jan.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-30702818

RESUMO

During replication of the hepatitis B virus (HBV) in liver cells, the reverse transcription of pre-genomic RNA (pgRNA) is initiated by protein priming at an RNA packaging signal ε located near the 5' end of pgRNA. Heat-shock proteins (Hsps) such as Hsc70, Hsp40, and Hsp90 have been reported to be involved in the reconstitution of HBV polymerase (P protein) and E. The P - E complex initiates the reverse transcription and assembly of nucleocapsids. Hence, blockade of P - ε interactions is an attractive target for drug intervention. We explored the influence of the Hsp inhibitor KNK437 on replication and transcription of the HBV. Three working models were applied: HepG2. 2. 15 cell line; Huh7 cells transfected transiently with the 1. 05 X HBV (pCH9-3091) plasmid; Huh7 cells transfected transiently with the 1. 3 X HBV (pGEM-1. 3 X HBV) plasmid. Cytotoxic effects of KNK437 were detected by the CCK-8 method. Levels of hepatitis B surface antigen (HBsAg) and hepatitis B viral protein (HBeAg) in the media secreted from cells were measured using an ELISA. Intracellular HBV DNAs within nucleocapsids were measured by quantitative polymerase chain reaction (qPCR), and intracellular HBV RNAs by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Transcription of Hsps in cells was determined by qRT-PCR. Data suggested that KNK437 reduced the extracellular secretion of HBsAg and HBeAg in most cases; it downregulated expression of intracellular HBV DNAs within nucleocapsids and RNA transcripts. The lowest rate of viral DNAs in KNK437-treated hepatocytes for all experimental groups was ~1. 5%o (control, 100%), whereas that for RNAs was ~30%. Western blotting revealed KNK437 to inhibit intracellular core expression in HepG2. 2. 15. As a general inhibitor, KNK437 suppressed transcription of hsp70, hsp90b, and hsp4o. These data suggest that KNK437 may be a potent anti-HBV inhibitor for future therapy against chronic hepatitis.


Assuntos
Antivirais/farmacologia , Compostos Benzidrílicos/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/genética , Hepatite B/virologia , Pirrolidinonas/farmacologia , Transcrição Reversa/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Regulação Viral da Expressão Gênica , Hepatite B/tratamento farmacológico , Antígenos de Superfície da Hepatite B/genética , Antígenos de Superfície da Hepatite B/metabolismo , Antígenos E da Hepatite B/genética , Antígenos E da Hepatite B/metabolismo , Vírus da Hepatite B/fisiologia , Humanos , RNA Viral/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...