Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37446244

RESUMO

Macrophage infiltration and accumulation is a hallmark of chronic kidney disease. Tissue plasminogen activator (tPA) is a serine protease regulating the homeostasis of blood coagulation, fibrinolysis, and matrix degradation, and has been shown to act as a cytokine to trigger various receptor-mediated intracellular signal pathways, modulating macrophage function in response to kidney injury. In this review, we discuss the current understanding of tPA-modulated macrophage function and underlying signaling mechanisms during kidney fibrosis and inflammation.


Assuntos
Nefropatias , Ativador de Plasminogênio Tecidual , Camundongos , Animais , Ativador de Plasminogênio Tecidual/metabolismo , Transdução de Sinais , Nefropatias/metabolismo , Macrófagos/metabolismo , Rim/metabolismo
2.
Cancers (Basel) ; 15(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37173886

RESUMO

Cell-cell communication, either through direct contact or indirectly, is critical for multiple cellular processes, such as proliferation, survival, differentiation, and transdifferentiation, and it plays a fundamental role in maintaining the integrity of tissue structure and cellular environment [...].

4.
Front Cell Dev Biol ; 10: 974381, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120574

RESUMO

Annexin A2 is a Ca2+- and phospholipid-binding protein which is widely expressed in various types of cells and tissues. As a multifunctional molecule, annexin A2 is found to be involved in diverse cell functions and processes, such as cell exocytosis, endocytosis, migration and proliferation. As a receptor of plasminogen and tissue plasminogen activator, annexin A2 promotes plasmin generation and regulates the homeostasis of blood coagulation, fibrinolysis and matrix degradation. As an antigen expressed on cell membranes, annexin A2 initiates local inflammation and damage through binding to auto-antibodies. Annexin A2 also mediates multiple signaling pathways induced by various growth factors and oxidative stress. Aberrant expression of annexin A2 has been found in numerous kidney diseases. Annexin A2 has been shown to act as a co-receptor of integrin CD11b mediating NF-kB-dependent kidney inflammation, which is further amplified through annexin A2/NF-kB-triggered macrophage M2 to M1 phenotypic change. It also modulates podocyte cytoskeleton rearrangement through Cdc42 and Rac1/2/3 Rho pathway causing proteinuria. Thus, annexin A2 is implicated in the pathogenesis and progression of various kidney diseases. In this review, we focus on the current understanding of the role of annexin A2 in kidney diseases.

5.
Diabetes ; 71(11): 2412-2425, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35984399

RESUMO

Chronic hyperglycemia contributes to development of diabetic kidney disease by promoting glomerular injury. In this study, we evaluated the hypothesis that hyperglycemic conditions promote expression of the stress response protein regulated in development and DNA damage response 1 (REDD1) in the kidney in a manner that contributes to the development of oxidative stress and renal injury. After 16 weeks of streptozotocin-induced diabetes, albuminuria and renal hypertrophy were observed in wild-type (WT) mice coincident with increased renal REDD1 expression. In contrast, diabetic REDD1 knockout (KO) mice did not exhibit impaired renal physiology. Histopathologic examination revealed that glomerular damage including mesangial expansion, matrix deposition, and podocytopenia in the kidneys of diabetic WT mice was reduced or absent in diabetic REDD1 KO mice. In cultured human podocytes, exposure to hyperglycemic conditions enhanced REDD1 expression, increased reactive oxygen species (ROS) levels, and promoted cell death. In both the kidney of diabetic mice and in podocyte cultures exposed to hyperglycemic conditions, REDD1 deletion reduced ROS and prevented podocyte loss. Benefits of REDD1 deletion were recapitulated by pharmacological GSK3ß suppression, supporting a role for REDD1-dependent GSK3ß activation in diabetes-induced oxidative stress and renal defects. The results support a role for REDD1 in diabetes-induced renal complications.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Hiperglicemia , Podócitos , Humanos , Camundongos , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estreptozocina , Glicogênio Sintase Quinase 3 beta/metabolismo , Nefropatias Diabéticas/metabolismo , Albuminúria/genética , Podócitos/metabolismo , Rim/metabolismo , Camundongos Knockout , Hiperglicemia/metabolismo
6.
Front Biosci (Landmark Ed) ; 26(8): 253-254, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34455755

RESUMO

No abstract present.


Assuntos
Imunidade , Serotonina
7.
Microrna ; 10(2): 91-96, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34238178

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs (19~25 nucleotides) that regulate gene expression at a post-transcriptional level through repression of mRNA translation or mRNA decay. MiR-147, which was initially discovered in mouse spleen and macrophages, has been shown to correlate with coronary atherogenesis and inflammatory bowel disease and modulate macrophage functions and inflammation through TLR-4. Altered miR-147 level has been shown in various human diseases, including infectious disease, cancer, cardiovascular disease, neurodegenerative disorder, etc. This review will focus on the current understanding regarding the role of miR-147 in inflammation and diseases.


Assuntos
MicroRNAs/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Macrófagos , Camundongos , MicroRNAs/genética , Estabilidade de RNA
8.
Sci Total Environ ; 770: 144667, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33515884

RESUMO

Water salinity is a growing global environmental health concern. However, little is known about the relation between water salinity and chronic health outcomes in non-coastal, lean populations. Daasanach pastoralists living in northern Kenya traditionally rely on milk, yet are experiencing socioecological changes and have expressed concerns about the saltiness of their drinking water. Therefore, this cross-sectional study conducted water quality analyses to examine how water salinity, along with lifestyle factors like milk intake, was associated with hypertension (blood pressure BP ≥140 mm Hg systolic or ≥90 mm Hg diastolic) and hyperdilute urine (urine specific gravity <1.003 g/mL, indicative of altered kidney function). We collected health biomarkers and survey data from 226 non-pregnant adults (46.9% male) aged 18+ from 134 households in 2019 along with participant observations in 2020. The salinity (total concentration of all dissolved salts) of reported drinking water from hand-dug wells in dry river beds, boreholes, and a pond ranged from 120 to 520 mg/L. Water from Lake Turkana and standpipes, which was only periodically used for consumption when no other drinking sources are available, ranged from 1100 to 2300 mg/L. Multiple logistic regression models with standard errors clustered on households indicate that each additional 100 mg/L of drinking water salinity was associated with 45% (95% CI: 1.09-1.93, P = 0.010) increased odds of hypertension and 33% (95% CI: 0.97-1.83, P = 0.075) increased odds of hyperdilute urine adjusted for confounders. Results were robust to multiple specifications of the models and sensitivity analyses. Daily milk consumption was associated with 61-63% (P < 0.01) lower odds of both outcomes. This considerable protective effect of milk intake may be due to the high potassium, magnesium, and calcium contents or the protective lifestyle considerations of moving with livestock. Our study results demonstrate that drinking water salinity may have critical health implications for blood pressure and kidney function even among lean, active pastoralists.


Assuntos
Água Potável , Hipertensão , Adolescente , Adulto , Estudos Transversais , Ingestão de Líquidos , Água Potável/análise , Feminino , Humanos , Hipertensão/epidemiologia , Quênia/epidemiologia , Masculino , Salinidade
9.
Methods Mol Biol ; 2346: 63-71, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32399746

RESUMO

Methods for the mechanistic investigations on renal fibrosis have long been concentrated on individual type of cells, such as fibroblasts and epithelial cells. However, in recent years, growing numbers of studies have been shifting toward the role of the intercellular interactions, such as communication between tubular epithelial cells and fibroblasts. Various co-culture models have been utilized in the studies of cell-cell communication and interaction. In this chapter, we describe an innovative co-culture model employing the porous membranes for spatially partitioning the cells while allowing direct crosstalk between fibroblasts and epithelial cells in an effort of mimicking in vivo environment.


Assuntos
Técnicas de Cocultura , Células Epiteliais/metabolismo , Fibroblastos/metabolismo , Rim/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Animais , Sobrevivência Celular , Células Cultivadas , Humanos , Rim/citologia , Camundongos , Camundongos Transgênicos , Modelos Biológicos
10.
Cells ; 9(6)2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32485860

RESUMO

The activation of the nuclear factor-κB (NF-κB) pathway plays a central role in the initiation and progression of inflammation, which contributes to the pathogenesis and progression of various human diseases including kidney, brain, and other diseases. Tissue plasminogen activator (tPA), a serine protease regulating homeostasis of blood coagulation, fibrinolysis, and matrix degradation, has been shown to act as a cytokine to trigger profound receptor-mediated intracellular events, modulate the NF-κB pathway, and mediate organ dysfunction and injury. In this review, we focus on the current understanding of NF-κB and tPA signaling in the development and progression of kidney disease. Their roles in the nervous and cardiovascular system are also briefly discussed.


Assuntos
Nefropatias/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Ativador de Plasminogênio Tecidual/metabolismo , Animais , Humanos , Inflamação/patologia , Nefropatias/patologia , Macrófagos/metabolismo , Ativador de Plasminogênio Tecidual/química
11.
J Biol Chem ; 294(25): 9901-9910, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31076505

RESUMO

Healthy kidney structure and environment rely on epithelial integrity and interactions between epithelial cells and other kidney cells. The Ser/Thr kinase 90 kDa ribosomal protein S6 kinase 1 (p90RSK) belongs to a protein family that regulates many cellular processes, including cell motility and survival. p90RSK is predominantly expressed in the kidney, but its possible role in chronic kidney disease (CKD) remains largely unknown. Here, we found that p90RSK expression is dramatically activated in a classic mouse obstructive chronic kidney disease model, largely in the interstitial FSP-1-positive fibroblasts. We generated FSP-1-specific p90RSK transgenic mouse (RSK-Tg) and discovered that these mice, after obstructive injury, display significantly increased fibrosis and enhanced tubular epithelial damage compared with their wt littermates (RSK-wt), indicating a role of p90RSK in fibroblast-epithelial communication. We established an in vitro fibroblast-epithelial coculture system with primary kidney fibroblasts from RSK-Tg and RSK-wt mice and found that RSK-Tg fibroblasts consistently produce excessive H2O2 causing epithelial oxidative stress and inducing nuclear translocation of the signaling protein ß-catenin. Epithelial accumulation of ß-catenin, in turn, promoted epithelial apoptosis by activating the transcription factor forkhead box class O1 (FOXO1). Of note, blockade of reactive oxygen species (ROS) or ß-catenin or FOXO1 activity abolished fibroblast p90RSK-mediated epithelial apoptosis. These results make it clear that p90RSK promotes kidney fibrosis by inducing fibroblast-mediated epithelial apoptosis through ROS-mediated activation of ß-catenin/FOXO1 signaling pathway.


Assuntos
Células Epiteliais/patologia , Fibroblastos/patologia , Fibrose/patologia , Nefropatias/patologia , Proteínas Quinases S6 Ribossômicas 90-kDa/fisiologia , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo , Animais , Apoptose , Células Epiteliais/metabolismo , Fibroblastos/metabolismo , Fibrose/etiologia , Fibrose/metabolismo , Nefropatias/etiologia , Nefropatias/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estresse Oxidativo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Proteína A4 de Ligação a Cálcio da Família S100/genética , Transdução de Sinais
12.
Int J Mol Sci ; 20(4)2019 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-30813401

RESUMO

The 90 kDa ribosomal s6 kinases (RSKs) are a group of serine/threonine kinases consisting of 4 RSK isoforms (RSK1-4), of which RSK1 is also designated as p90RSK. p90RSK plays an important role in the Ras-mitogen-activated protein kinase (MAPK) signalling cascade and is the direct downstream effector of Ras-extracellular signal-regulated kinase (ERK1/2) signalling. ERK1/2 activation directly phosphorylates and activates p90RSK, which, in turn, activates various signalling events through selection of different phosphorylation substrates. Upregulation of p90RSK has been reported in numerous human diseases. p90RSK plays an important role in the regulation of diverse cellular processes. Thus, aberrant activation of p90RSK plays a critical role in the pathogenesis of organ dysfunction and damage. In this review, we focus on the current understanding of p90RSK functions and roles in the development and progression of kidney diseases. Roles of p90RSK, as well as other RSKs, in cardiovascular disorders and cancers are also discussed.


Assuntos
Nefropatias/enzimologia , Nefropatias/patologia , Rim/enzimologia , Rim/patologia , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Animais , Doenças Cardiovasculares/enzimologia , Humanos , Neoplasias/enzimologia , Transdução de Sinais
14.
Cell Death Dis ; 9(6): 639, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844390

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and fatal lung disease that is characterized by enhanced changes in stem cell differentiation and fibroblast proliferation. Resident mesenchymal stem cells (LR-MSCs) can undergo phenotype conversion to myofibroblasts to augment extracellular matrix production, impairing function and contributing to pulmonary fibrosis. Hedgehog and Wnt signaling are developmental signal cascades that play an essential role in regulating embryogenesis and tissue homeostasis. Recently, it has been reported that both hedgehog and Wnt signaling play important roles in pulmonary fibrogenesis. Thus, the identification of specific target regulators may yield new strategy for pulmonary fibrosis therapies. In our work, we demonstrated the critical role of Gli1, Wnt7b, Wnt10a and Fzd10 in the process of pulmonary fibrogenesis in vitro and in vivo. Gli1 was induced in LR-MSCs following TGF-ß1 treatment and fibrotic lung tissues. Inhibition of Gli1 suppressed myofibroblast differentiation of LR-MSCs and pulmonary fibrosis, and decreased the expression of Wnt7b, Wnt10a and ß-catenin. Gli1 bound to and increased promoter activity of the Wnt7b and Wnt10a genes, and Wnt7b and Wnt10a were critical activators of Wnt/ß-catenin signaling. It was noteworthy that Fzd10 knockdown reduced Wnt7b and Wnt10a-induced activation of Wnt/ß-catenin signaling, which imply that Wnt7b and Wnt10a may be the ligands for Fzd10. Moreover, siRNA-mediated inhibition of Fzd10 prevented TGF-ß1-induced myofibroblast differentiation of LR-MSCs in vitro and impaired bleomycin-induced pulmonary fibrosis. We conclude that hedgehog and Wnt/ß-catenin signaling play a critical role in promoting myofibroblast differentiation of LR-MSCs and development of pulmonary fibrosis. These findings elucidate a therapeutic approach to attenuate pulmonary fibrosis through targeted inhibition of Gli1 or Fzd10.


Assuntos
Diferenciação Celular , Proteínas Hedgehog/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Células-Tronco Mesenquimais/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Via de Sinalização Wnt , Animais , Bleomicina , Diferenciação Celular/efeitos dos fármacos , Receptores Frizzled/metabolismo , Fibrose Pulmonar Idiopática/genética , Pulmão/patologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Modelos Biológicos , Miofibroblastos/efeitos dos fármacos , Piridinas/farmacologia , Tiofenos/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética , Proteína GLI1 em Dedos de Zinco/metabolismo
15.
Oncotarget ; 8(50): 88094-88103, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-29152144

RESUMO

Macrophage accumulation is one of the hallmarks of progressive kidney disease. In response to injury, macrophages undergo a phenotypic polarization to become two functionally distinct subsets: M1 and M2 macrophages. Macrophage polarization is a dynamic process, and recent work indicates that macrophages, in response to kidney injury, can shift their polarity. However, the underlying mechanisms remain largely unknown. Tissue-type plasminogen activator (tPA), a protease up-regulated in the chronically injured kidneys, has been shown to preferably promote M1 macrophage accumulation and renal inflammation. We hypothesized that tPA may be an endogenous factor that modulates macrophage M2 to M1 phenotypic change contributing to the accumulation of M1 macrophages in the injured kidneys. It was found that obstruction-induced renal M1 chemokine expression was alleviated in tPA knockout mice, and these knockout mice displayed increased M2 markers. In vitro, resting J774 macrophages were treated with IL-4 to induce M2 phenotype as indicated by de novo expression of arginase 1, Ym1, and IL-10, as well as suppression of iNOS, TNF-α, and IL-1ß. Intriguingly, these IL-4-induced M2 macrophages, after tPA treatment, not only lost their M2 markers such as arginase 1, Ym1, and IL-10, but also displayed increased M1 chemokines including iNOS, TNF-α, and IL-1ß. Possible endotoxin contamination was also excluded as heat-inactivated tPA lost its effect. Additionally, tPA-mediated macrophage M2 to M1 phenotypic change required its receptor annexin A2, and SN50, a specific NF-κB inhibitor, abolished tPA's effect. Thus, it's clear that tPA promotes macrophage M2 to M1 phenotypic change through annexin A2-mediated NF-κB pathway.

16.
J Leukoc Biol ; 101(6): 1349-1359, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28274991

RESUMO

Bacterial pneumonia is a common and serious clinical entity. Alveolar epithelial cells and alveolar macrophages are the first line of defense in the innate immunity against bacterial pathogens. Epithelial cells are known to release chemokines/cytokines that recruit and activate phagocytic cells. However, the signals sent from alveolar macrophages back to the lung epithelial cells remain largely unexplored. We found that LPS, a well-recognized stimulator derived from gram-negative (G-) bacteria, rapidly and robustly induces the secretion of macrophage-derived extracellular vesicles (EVs). The main type of EVs found in the early stages after LPS stimulation are apoptotic bodies (ABs) and not microvesicles (MVs) or exosomes (Exos). Furthermore, LPS markedly up-regulate the levels of a repertoire of microRNAs (miRNAs) in the macrophage-derived ABs, including miR-221 and miR-222. Functionally, the LPS-induced, macrophage-derived ABs promote the proliferation of malignant and/or normal lung epithelial cells. We next directly transfected miR-221 and/or miR-222 inhibitors into the LPS-induced ABs. Deletion of miR-221/222 in ABs significantly reduces the AB-mediated proliferation of lung epithelial cells. Mechanistically, AB-shuttling miR-221/222 promote cell growth by modulating cyclin-dependent kinase inhibitor 1B (CDKN1B) pathways. Collectively, LPS-induced, macrophage-derived ABs promote the proliferation of their recipient epithelial cells, partially via AB-shuttling miRNAs.


Assuntos
Proliferação de Células , Micropartículas Derivadas de Células/metabolismo , Vesículas Extracelulares/metabolismo , Pulmão/citologia , Macrófagos Alveolares/citologia , MicroRNAs/genética , Animais , Células Cultivadas , Exossomos , Humanos , Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
17.
Sci Rep ; 7: 40958, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28098218

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and fatal fibrotic lung disease characterized by profound changes in stem cell differentiation, epithelial cell phenotypes and fibroblast proliferation. In our study, we found that miR-497-5p was significantly upregulated both during myofibroblast differentiation of lung resident mesenchymal stem cells (LR-MSCs) and in the lung tissues of a pulmonary fibrosis model. In addition, as determined by luciferase assays and Western blot analysis, reversion-inducing cysteine-rich protein with kazal motifs (Reck) was identified to be one of the target genes of miR-497-5p, and Reck could suppress the expression of matrix metalloproteinase-2 (Mmp2) and Mmp9, which could activate latent transforming growth factor-ß1 (TGF-ß1). To test the potential therapeutic significance of this miRNA, we modulated the expression of miR-497-5p in LR-MSCs and relevant animal models. The results demonstrated that upregulation of miR-497-5p could induce LR-MSCs to differentiate into myofibroblasts and promote pulmonary fibrogenesis, while inhibition of its expression could effectively retard these processes. In conclusion, our work supports that controlling pulmonary fibrogenesis via inhibition of miR-497-5p expression may provide a potential therapeutic strategy for IPF.


Assuntos
Diferenciação Celular , Proteínas Ligadas por GPI/metabolismo , Fibrose Pulmonar Idiopática/patologia , Células-Tronco Mesenquimais/fisiologia , MicroRNAs/metabolismo , Miofibroblastos/fisiologia , Animais , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Genes Reporter , Histocitoquímica , Imuno-Histoquímica , Luciferases/análise , Luciferases/genética , Camundongos
18.
Sci Rep ; 6: 30122, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27444321

RESUMO

Myofibroblast differentiation of lung resident mesenchymal stem cells (LR-MSC) plays an important role in idiopathic pulmonary fibrosis. By comparing the expression profiles of miRNAs before and after myofibroblast differentiation of LR-MSC, we identified miR-877-3p as a fibrosis-related miRNA. We found that miR-877-3p sequestration inhibited the myofibroblast differentiation of LR-MSC and attenuates bleomycin-induced lung fibrosis by targeting Smad7. Smad7, as an inhibitory smad in the TGF-ß1 signaling pathway, was decreased in the myofibroblast differentiation of LR-MSC and up-regulation of Smad7 could inhibit the differentiation process. Our data implicates a potential application of miR-877-3p as a fibrosis suppressor for pulmonary fibrosis therapy and also as a fibrosis marker for predicting prognosis.


Assuntos
Diferenciação Celular/fisiologia , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/fisiopatologia , MicroRNAs/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/fisiologia , Proteína Smad7/metabolismo , Animais , Bleomicina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Fibrose Pulmonar Idiopática/induzido quimicamente , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima/fisiologia
19.
Mol Med ; 22: 233-243, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27257854

RESUMO

Lung epithelial cell apoptosis is an important feature of hyperoxia-induced lung injury. Death receptor-associated extrinsic pathway and mitochondria-associated intrinsic pathway both mediate the development of lung epithelial cell apoptosis. Despite decades of research, molecular mechanisms of hyperoxia-induced epithelial cell apoptosis remain incompletely understood. Here we report a novel regulatory paradigm in response to hyperoxia-associated oxidative stress. Hyperoxia markedly up-regulated miR-15a/16 levels in lung epithelial cells, broncho-alveolar lavage fluid (BALF) and lung tissue. This effect was mediated by hyperoxia-induced reactive oxygen species (ROS). Functionally, miR-15a/16 inhibitors induced caspase 3-mediated lung epithelial cell apoptosis, in the presence of hyperoxia. MiR-15a/16 inhibitors robustly enhanced FADD level and down-regulated Bcl-2 expression. Consistently, cleaved caspase 8 and 9 were highly induced in the miR-15a/16 deficient cells, after hyperoxia. Using airway epithelial cell specific, miR-15a/16-/- mice, we found that Bcl-2 significantly reduced in lung epithelial cells in vivo after hyperoxia. In contrast, caspase 3, 8 and Bcl-2 associated death promoter (BAD) were highly elevated in the miR-15a/16-/- epithelial cells in vivo. Interestingly, in lung epithelial malignant cells, rather than benign cells, deletion of miR-15a/16 prevented apoptosis. Furthermore, deletion of miR-15a/16 in macrophages also prohibited apoptosis, opposite to what we have found in normal lung epithelial cells. Taken together, our data suggested that miR-15a/16 may exert differential roles in different cell types. MiR-15a/16 deficiency result in lung epithelial cell apoptosis in response to hyperoxia, via modulating both intrinsic and extrinsic apoptosis pathways.

20.
Exp Mol Pathol ; 101(1): 22-30, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27112840

RESUMO

Pulmonary fibrosis is a progressive lung disorder of unknown etiology, which is characterized by alterations in alveolar epithelium function, fibroblast activation, and increased extracellular matrix deposition. Recent studies have demonstrated that PF is associated with uncontrolled production of cytokines after lung injury. In the present study, we found that transforming growth factor-ß1 (TGF-ß1) and fibroblast growth factor 2 (FGF-2) were both upregulated in bleomycin-induced fibrotic lung tissue and primary murine alveolar epithelial Type II (ATII) cells treated with bleomycin. Furthermore, we discovered that TGF-ß1 could induce the differentiation of lung resident mesenchymal stem cells (LR-MSCs) into fibroblasts, which may play an essential role in PF. LR-MSCs incubated with FGF-2 showed modest alterations in the expression of α-SMA and Vimentin. Moreover, in our study, we found that Wnt/ß-catenin signaling was activated both in vitro and in vivo as a result of bleomycin treatment. Interestingly, we also found that suppression of the Wnt/ß-catenin signaling could significantly attenuate bleomycin-induced PF accompanied with decreased expression of TGF-ß1 and FGF-2 in vitro and in vivo. These results support that controlling the aberrant expression of TGF-ß1 and FGF-2 via inhibition of Wnt/ß-catenin signaling could serve as a potential therapeutic strategy for PF.


Assuntos
Fator 2 de Crescimento de Fibroblastos/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Via de Sinalização Wnt , Animais , Bleomicina , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pulmão/patologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Regulação para Cima/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...