Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Neural Netw Learn Syst ; 33(5): 2159-2167, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34951857

RESUMO

This article proposes a novel recognition algorithm for the steady-state visual evoked potentials (SSVEP)-based brain-computer interface (BCI) system. By combining the advantages of multivariate variational mode decomposition (MVMD) and canonical correlation analysis (CCA), an MVMD-CCA algorithm is investigated to improve the detection ability of SSVEP electroencephalogram (EEG) signals. In comparison with the classical filter bank canonical correlation analysis (FBCCA), the nonlinear and non-stationary EEG signals are decomposed into a fixed number of sub-bands by MVMD, which can enhance the effect of SSVEP-related sub-bands. The experimental results show that MVMD-CCA can effectively reduce the influence of noise and EEG artifacts and improve the performance of SSVEP-based BCI. The offline experiments show that the average accuracies of MVMD-CCA in the training dataset and testing dataset are improved by 3.08% and 1.67%, respectively. In the SSVEP-based online robotic manipulator grasping experiment, the recognition accuracies of the four subjects are 92.5%, 93.33%, 90.83%, and 91.67%, respectively.


Assuntos
Interfaces Cérebro-Computador , Robótica , Algoritmos , Eletroencefalografia/métodos , Potenciais Evocados Visuais , Humanos , Redes Neurais de Computação , Estimulação Luminosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...