Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Ann Med ; 56(1): 2361843, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38830017

RESUMO

BACKGROUND: Literature on the safety of remdesivir in hospitalized COVID-19 patients with severe renal impairment is limited. We aimed to investigate the safety and effectiveness of remdesivir in this population. METHODS: We conducted a retrospective cohort study of adult hospitalized COVID-19 patients who received remdesivir between April 2022 and October 2022. Outcomes were compared between estimated glomerular filtration rate (eGFR) <30 mL/min/1.73 m2 and ≥30 mL/min/1.73 m2 groups. The primary safety outcomes were acute kidney injury (AKI) and bradycardia, while the primary effectiveness outcomes included mortality in COVID-19-dedicated wards and hospital mortality. Secondary outcomes included laboratory changes, disease progression, and recovery time. RESULTS: A total of 1,343 patients were recruited, with 307 (22.9%) in the eGFR <30 group and 1,036 (77.1%) in the eGFR ≥30 group. Patients with an eGFR <30 had higher risks of AKI (adjusted hazard ratio [aHR] 2.92, 95% CI 1.93-4.44) and hospital mortality (aHR 1.47, 95% CI 1.06-2.05) but had comparable risks of bradycardia (aHR 1.15, 95% CI 0.85-1.56) and mortality in dedicated wards (aHR 1.43, 95% CI 0.90-2.28) than patients with an eGFR ≥30. Risk of disease progression was higher in the eGFR <30 group (adjusted odds ratio 1.62, 95% CI 1.16-2.26). No difference between the two groups in laboratory changes and recovery time. CONCLUSIONS: Hospitalized COVID-19 patients receiving remdesivir with severe renal impairment had an increased risk of AKI, hospital mortality, and COVID-19 disease progression compared to patients without severe renal impairment.


Assuntos
Injúria Renal Aguda , Monofosfato de Adenosina , Alanina , Antivirais , Tratamento Farmacológico da COVID-19 , Taxa de Filtração Glomerular , Mortalidade Hospitalar , Hospitalização , SARS-CoV-2 , Humanos , Alanina/análogos & derivados , Alanina/uso terapêutico , Alanina/efeitos adversos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/uso terapêutico , Monofosfato de Adenosina/efeitos adversos , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Idoso , Antivirais/uso terapêutico , Antivirais/efeitos adversos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/epidemiologia , Hospitalização/estatística & dados numéricos , COVID-19/complicações , COVID-19/mortalidade , Resultado do Tratamento , Insuficiência Renal/epidemiologia , Bradicardia/induzido quimicamente , Bradicardia/epidemiologia , Adulto
2.
iScience ; 26(11): 108130, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37876795

RESUMO

Parkinson's disease (PD) is characterized by the irreversible loss of dopaminergic neurons and the accumulation of α-synuclein in Lewy bodies. The oligomeric α-synuclein (O-αS) is the most toxic form of α-synuclein species, and it has been reported to be a robust inflammatory mediator. Mutations in Leucine-Rich Repeat Kinase 2 (LRRK2) are also genetically linked to PD and neuroinflammation. However, how O-αS and LRRK2 interact in glial cells remains unclear. Here, we reported that LRRK2 G2019S mutation, which is one of the most frequent causes of familial PD, enhanced the effects of O-αS on astrocytes both in vivo and in vitro. Meanwhile, inhibition of LRRK2 kinase activity could relieve the inflammatory effects of both LRRK2 G2019S and O-αS. We also demonstrated that nuclear factor κB (NF-κB) pathway might be involved in the neuroinflammatory responses. These findings revealed that inhibition of LRRK2 kinase activity may be a viable strategy for suppressing neuroinflammation in PD.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37464816

RESUMO

Aims: Cystathionine ß-synthase (CBS) is essential for homocysteine (Hcy) transsulfuration, yielding cysteine as a common precursor of hydrogen sulfide (H2S), glutathione (GSH), and other sulfur molecules, which produce neuroprotective effects in neurological conditions. We previously reported a disruption of microglial CBS/H2S signaling in a Parkinson's disease (PD) mouse model. Yet, it remains unclear whether CBS affects nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome activity and other pathologies in PD. Results: Microglial CBS expression decreased after lipopolysaccharide (LPS) stimulation. Elevated GSSG (the oxidized GSH) content and decreased H2S generation were found in the brains of microglial cbs conditional-knockout (cbscKO) mice, whereas serum and brain Hcy levels remained unaltered. Moreover, microglial cbscKO mice were susceptible to NLRP3 inflammasome activation and dopaminergic neuron losses caused by LPS injection into the substantia nigra, whereas cbs overexpression or activation produced opposite effects. In vitro studies showed that cbs overexpression or activation suppressed microglial NLRP3 inflammasome activation and interleukin (IL)-1ß secretion by reducing mitochondrial reactive oxygen species (mitoROS) level. Conversely, ablation of cbs enhanced NLRP3 expression and mitoROS generation and augmented microglial NLRP3 inflammasome activity in response to adenosine triphosphate challenge, which was blocked by the mitoROS scavenger. Innovation and Conclusion: The study demonstrated an elevated GSSG level and reduced H2S generation, which correlated with a susceptible status of microglia in the brain of cbscKO mice. Our findings reveal a critical role of CBS in restraining the microglial NLRP3 inflammasome by controlling redox homeostasis and highlight that activation or upregulation of CBS may become a potential strategy for PD treatment.

4.
Acta Pharmacol Sin ; 44(1): 32-43, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35896696

RESUMO

Inflammation is one of the pathogenic processes in Parkinson's disease (PD). Dopamine receptor agonist pramipexole (PPX) is extensively used for PD treatment in clinics. A number of studies show that PPX exerts neuroprotection on dopaminergic (DA) neurons, but the molecular mechanisms underlying the protective effects of PPX on DA neurons are not fully elucidated. In the present study, we investigated whether PPX modulated PD-related neuroinflammation and underlying mechanisms. PD model was established in mice by bilateral striatum injection of lipopolyssaccharide (LPS). The mice were administered PPX (0.5 mg·kg-1·d-1, i.p.) 3 days before LPS injection, and for 3 or 21 days after surgery, respectively, for biochemical and histological analyses. We showed that PPX administration significantly alleviated the loss of DA neurons, and suppressed the astrocyte activation and levels of proinflammatory cytokine IL-1ß in the substantia nigra of LPS-injected mice. Furthermore, PPX administration significantly decreased the expression of NLRP3 inflammasome-associated proteins, i.e., cleaved forms of caspase-1, IL-1ß, and apoptosis-associated speck-like protein containing a caspase recruit domain (ASC) in the striatum. These results were validated in LPS+ATP-stimulated primary mouse astrocytes in vitro. Remarkably, we showed that PPX (100-400 µM) dose-dependently enhanced the autophagy activity in the astrocytes evidenced by the elevations in LC3-II and BECN1 protein expression, as well as the increase of GFP-LC3 puncta formation. The opposite effects of PPX on astrocytic NLRP3 inflammasome and autophagy were eliminated by Drd3 depletion. Moreover, we demonstrated that both pretreatment of astrocytes with autophagy inhibitor chloroquine (40 µM) in vitro and astrocyte-specific Atg5 knockdown in vivo blocked PPX-caused inhibition on NLRP3 inflammasome and protection against DA neuron damage. Altogether, this study demonstrates an anti-neuroinflammatory activity of PPX via a Drd3-dependent enhancement of autophagy activity in astrocytes, and reveals a new mechanism for the beneficial effect of PPX in PD therapy.


Assuntos
Doença de Parkinson , Camundongos , Animais , Pramipexol/uso terapêutico , Pramipexol/metabolismo , Pramipexol/farmacologia , Doença de Parkinson/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Astrócitos/metabolismo , Lipopolissacarídeos/farmacologia , Autofagia , Camundongos Endogâmicos C57BL
5.
Front Aging Neurosci ; 14: 979869, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034136

RESUMO

Microglia are the resident innate immune cells in the central nervous system (CNS) that serve as the first line innate immunity in response to pathogen invasion, ischemia and other pathological stimuli. Once activated, they rapidly release a variety of inflammatory cytokines and phagocytose pathogens or cell debris (termed neuroinflammation), which is beneficial for maintaining brain homeostasis if appropriately activated. However, excessive or uncontrolled neuroinflammation may damage neurons and exacerbate the pathologies in neurological disorders. Microglia are highly dynamic cells, dependent on energy supply from mitochondria. Moreover, dysfunctional mitochondria can serve as a signaling platform to facilitate innate immune responses in microglia. Mitophagy is a means of clearing damaged or redundant mitochondria, playing a critical role in the quality control of mitochondrial homeostasis and turnover. Mounting evidence has shown that mitophagy not only limits the inflammatory response in microglia but also affects their phagocytosis, whereas mitochondria dysfunction and mitophagy defects are associated with aging and neurological disorders. Therefore, targeting microglial mitophagy is a promising therapeutic strategy for neurological disorders. This article reviews and highlights the role and regulation of mitophagy in microglia in neurological conditions, and the research progress in manipulating microglial mitophagy and future directions in this field are also discussed.

6.
J Clin Oncol ; 40(11): 1206-1219, 2022 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-35044851

RESUMO

PURPOSE: H1-antihistamines (AHs) may exert protective effects against cancer. This study investigated the association of AH use with the risk of hepatocellular carcinoma (HCC) in patients with hepatitis B virus (HBV), hepatitis C virus (HCV), or dual HBV-HCV virus infection. MATERIALS AND METHODS: Patients with HBV, HCV, or dual HBV-HCV infection were enrolled from Taiwan's National Health Insurance Research Database and examined for the period from January 1, 2006, to December 31, 2015. We used the Kaplan-Meier method and Cox proportional hazards regression to evaluate the association between AH use and HCC risk. RESULTS: We included patients with HBV infection (n = 521,071), HCV (n = 169,159), and dual HBV-HCV (n = 39,016). Patients with HBV, HCV, or dual virus infection who used AHs exhibited significantly lower risk of HCC relative to patients who did not use AH, with their adjusted hazard ratio being 0.489 (95% CI, 0.455 to 0.524), 0.484 (95% CI, 0.450 to 0.522), and 0.469 (95% CI, 0.416 to 0.529), respectively. Furthermore, there was a dose-response relationship between AH use and the risk of HCC in the HBV cohort. The adjusted hazard ratios were 0.597 (95% CI, 0.530 to 0.674), 0.528 (0.465 to 0.600), 0.470 (0.416 to 0.531), and 0.407 (0.362 to 0.457) for AH use of 28-42, 43-63, 64-119, and ≥ 120 cumulative defined daily doses, respectively, relative to no AH use. Additionally, there was also a dose-response relationship between AH use and the risk of HCC in the HCV and dual HBV-HCV cohorts. CONCLUSION: AH use may reduce the risk for HCC among patients with HBV, HCV, or dual infection in a dose-dependent manner. Further mechanistic research is needed.


Assuntos
Carcinoma Hepatocelular , Hepatite B , Hepatite C , Neoplasias Hepáticas , Carcinoma Hepatocelular/epidemiologia , Carcinoma Hepatocelular/prevenção & controle , Hepacivirus , Hepatite B/complicações , Hepatite B/tratamento farmacológico , Vírus da Hepatite B , Hepatite C/complicações , Hepatite C/tratamento farmacológico , Antagonistas dos Receptores Histamínicos , Humanos , Neoplasias Hepáticas/epidemiologia , Neoplasias Hepáticas/prevenção & controle
8.
Aging Cell ; 20(12): e13522, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34811872

RESUMO

The cell-to-cell transfer of α-synuclein (α-Syn) greatly contributes to Parkinson's disease (PD) pathogenesis and underlies the spread of α-Syn pathology. During this process, extracellular α-Syn can activate microglia and neuroinflammation, which plays an important role in PD. However, the effect of extracellular α-Syn on microglia autophagy is poorly understood. In the present study, we reported that extracellular α-Syn inhibited the autophagy initiation, as indicated by LC3-II reduction and p62 protein elevation in BV2 and cultured primary microglia. The in vitro findings were verified in microglia-enriched population isolated from α-Syn-overexpressing mice induced by adeno-associated virus (AAV2/9)-encoded wildtype human α-Syn injection into the substantia nigra (SN). Mechanistically, α-Syn led to microglial autophagic impairment through activating toll-like receptor 4 (Tlr4) and its downstream p38 and Akt-mTOR signaling because Tlr4 knockout and inhibition of p38, Akt as well as mTOR prevented α-Syn-induced autophagy inhibition. Moreover, inhibition of Akt reversed the mTOR activation but failed to affect p38 phosphorylation triggered by α-Syn. Functionally, the in vivo evidence showed that lysozyme 2 Cre (Lyz2cre )-mediated depletion of autophagy-related gene 5 (Atg5) in microglia aggravated the neuroinflammation and dopaminergic neuron losses in the SN and exacerbated the locomotor deficit in α-Syn-overexpressing mice. Taken together, the results suggest that extracellular α-Syn, via Tlr4-dependent p38 and Akt-mTOR signaling cascades, disrupts microglial autophagy activity which synergistically contributes to neuroinflammation and PD development.


Assuntos
Autofagia/genética , Doenças Neuroinflamatórias/genética , Doença de Parkinson/genética , alfa-Sinucleína/metabolismo , Animais , Modelos Animais de Doenças , Camundongos
9.
Front Immunol ; 12: 736036, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659225

RESUMO

Background: Previous study revealed proton pump inhibitors (PPIs) have an effect on gut microbiota. Alteration of the microbiome causes changes of the host immune system and then induces the development of autoimmune diseases (ADs). This study aimed to explore the possible association between PPIs use and ADs. Methods: This study was conducted using data from the Taiwan National Health Insurance Research Database in the period between 2002 and 2015. We performed multivariate and stratified analysis through the Kaplan-Meier method and Cox proportional hazard models to estimate the association between proton pump inhibitor use and the risk of autoimmune diseases. Results: Of the 297,099 patients treated with PPI identified, the overall mean (SD) age was 49.17 (15.63) years and 56.28% of the subjects was male. As compared with the non-PPI group, the adjusted hazard ratio (aHR) were higher for incident organ specific ADs such as Graves disease (aHR=3.28), Hashmoto thyroiditis (aHR=3.61), autoimmune hemolytic anemia (aHR=8.88), immune thrombocytopenic purpura (aHR=5.05) Henoch-Schonlein pupura (aHR=4.83) and Myasthenia gravis (aHR=8.73). Furthermore, the adjusted hazard ratio (aHR) were also higher for incident systemic ADs such as ankylosing spondylitis (aHR=3.67), rheumatoid arthritis (aHR=3.96), primary Sjogren syndrome (aHR=7.81), systemic lupus erythemtoasus (aHR=7.03). systemic vasculitis (aHR=5.10), psoriasis (aHR=2.57), systemic scleroderma (aHR=15.85) and inflammatory myopathy (aHR=37.40). Furthermore, we observed no dose-dependent effect between PPI use and the risk of ADs. Conclusions: Our retrospective population-based cohort study showed that the prescription of proton pump inhibitors is associated with a higher risk of ADs.


Assuntos
Doenças Autoimunes/epidemiologia , Inibidores da Bomba de Prótons/efeitos adversos , Adulto , Idoso , Idoso de 80 Anos ou mais , Doenças Autoimunes/diagnóstico , Bases de Dados Factuais , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Taiwan/epidemiologia , Fatores de Tempo , Adulto Jovem
10.
Neurochem Int ; 150: 105187, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34534609

RESUMO

Hydrogen sulfide (H2S) serves as a neuromodulator and regulator of neuroinflammation. It is reported to be therapeutic for Parkinson's disease (PD) animal and cellular models. However, whether it affects α-synuclein accumulation in dopaminergic cells, the key pathological feature in PD, is poorly understood. In this study we reported that exogenous H2S donors NaHS and GYY4137 (GYY) enhanced the autophagy activity, as indicated by the increases of autophagy marker LC3-II expression and LC3 dots formation even during lysosome inhibition in dopaminergic cell lines and HEK293 cells. The enhancement of H2S donors on autophagic flux was mediated by adenosine 5'-monophosphate-activated protein kinase (AMPK)-dependent mammalian target of rapamycin (mTOR) inhibition, as H2S donors activated AMPK but reduced the mTOR activity and H2S donors-induced LC3-II increase was diminished by mTOR activator. Moreover, point mutation of Cys302 into alanine (C302A) in AMPKα2 subunit abolished the AMPK activation and mTOR inhibition, as well as autophagic flux increase elicited by NaHS. Interestingly, NaHS triggered AMPK S-sulfuration, which was not observed in AMPK C302A-transfected cells. Further, NaHS was able to attenuate α-synuclein accumulation in a cellular model induced by dopamine oxidized metabolite 3, 4-dihydroxyphenylacetaldehyde (DOPAL), and this effect was interfered by autophagy inhibitor wortmannin and also eliminated in AMPK Cys302A-transfected cells. In sum, the findings identified a role of Cys302 S-sulfuration in AMPK activation induced by exogenous H2S and demonstrated that H2S donors could enhance the autophagic flux via AMPK-mTOR signaling and thus reduce α-synuclein accumulation in vitro.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/fisiologia , Neurônios Dopaminérgicos/metabolismo , Sulfeto de Hidrogênio/metabolismo , Morfolinas/farmacologia , Compostos Organotiofosforados/farmacologia , Sulfetos/farmacologia , Animais , Autofagia/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Sulfeto de Hidrogênio/agonistas , Células PC12 , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Ratos
11.
Neurosci Lett ; 762: 136166, 2021 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-34371125

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder and affects dopaminergic neurons. Autophagy often shows a circadian rhythm pattern under physiological conditions across 24 h. Abnormal autophagy and circadian dysfunction are two characteristics of PD. Whether the rhythm of autophagy is altered in PD has not yet been reported. Therefore, in this study, we collected peripheral blood samples at 6:00 h and 18:00 h from PD patients and age-matched controls, and analyzed the mRNA expressions of ULK1, BECN1, LAMP2, AMPK, and SNCA using real-time quantitative PCR. Blood samples analysis found that BECN1 and LAMP2 levels were decreased in patients with PD. Simultaneously, the rhythm of autophagy in PD is not consistent with that in the Control group, which may be a manifestation of the abnormal biological rhythm of PD.


Assuntos
Autofagia/fisiologia , Proteína Beclina-1/sangue , Ritmo Circadiano/fisiologia , Proteína 2 de Membrana Associada ao Lisossomo/sangue , Doença de Parkinson/sangue , Idoso , Feminino , Humanos , Leucócitos/metabolismo , Masculino
12.
Clin Rheumatol ; 40(9): 3755-3763, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33646447

RESUMO

OBJECTIVE: To compare Pneumocystis jirovecii pneumonia (PJP) risk between patients with autoimmune rheumatic diseases (ARD) and the general population METHODS: We identified patients with ARD recorded in the National Health Insurance Research Database of Taiwan from 2002 to 2015 and randomly selected a comparison cohort from the general population matched for age and sex. We analyzed PJP risk stratified by sex, age, comorbidities, and medications using Cox proportional hazard model. RESULTS: We enrolled 103,117 patients with ARD. PJP risk significantly increased in patients with any ARD and with each individual ARD like rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), Sjogren's syndrome (SjS), polymyositis and dermatomyositis (PM/DM), systemic sclerosis (SSc), and systemic vasculitis. Patients with PM/DM showed prominent risk with incidence rate of 12.47/100,000 patient year (95% confidence interval (CI), 32.16-86.70). In a time-dependent Cox proportional hazard model with comorbidities and medications as covariates, PM/DM, SSc, SLE, and SjS significantly increased adjusted hazard ratios (aHR) of 5.40, 5.12, 4.09, and 3.64, respectively (95% CI of 2.82-10.35, 2.16-12.13, 2.41-6.95, and 2.06-6.42, respectively). AHR after adjusting for male sex, cancer, human immunodeficiency virus infection (HIV), and interstitial lung disease also significantly increased. Use of daily oral steroid dose of >10 mg conferred the highest risk followed by mycophenolate. Use of injected steroids, cyclophosphamide, biological agents, methotrexate, and cyclosporine conferred a significantly higher risk. CONCLUSION: Underlying ARD significantly predisposes patients to PJP, with PM/DM posing the highest threat. In addition to underlying disease, comorbidities and concomitant immunosuppressants are major risks. The strongest risk is recent daily steroid dose of >10 mg. Mycophenolate seems to be a more prominent risk factor than cyclophosphamide. Key Points • Autoimmune rheumatic diseases (ARD) significantly increased the overall risk of PJP, and so did each individual ARD. • Use of steroids, mycophenolate, cyclophosphamide, biological agents, methotrexate, and cyclosporine all significantly increased risk of PJP. • Male, elderly, malignancy, HIV, and interstitial lung disease are also related to increased risk of PJP. • Underlying ARD, comorbidities, and use of immunosuppressant should all be considered in determining the overall risk of PJP.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Lúpus Eritematoso Sistêmico , Pneumocystis carinii , Pneumonia por Pneumocystis , Doenças Reumáticas , Idoso , Doenças Autoimunes/complicações , Doenças Autoimunes/epidemiologia , Humanos , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/epidemiologia , Masculino , Pneumonia por Pneumocystis/complicações , Pneumonia por Pneumocystis/epidemiologia , Doenças Reumáticas/complicações , Doenças Reumáticas/epidemiologia
13.
J Org Chem ; 85(13): 8352-8359, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32496068

RESUMO

The hydrolysis of carbonyl sulfide (COS) to form H2S by carbonic anhydrase has been demonstrated to be a viable strategy to deliver H2S in a biological system. Herein, we describe N-dithiasuccinoyl amines as thiol-triggered COS/H2S donors. Notably, thiol species especially GSH and homocysteine can trigger the release of both COS and H2S directly from several specific analogues via an unexpected mechanism. Importantly, two representative analogues Dts-1 and Dts-5 show intracellular H2S release, and Dts-1 imparts potent anti-inflammatory effects in LPS-challenged microglia cells. In conclusion, N-dithiasuccinoyl amine could serve as promising COS/H2S donors for either H2S biological studies or H2S-based therapeutics development.


Assuntos
Sulfeto de Hidrogênio , Compostos de Sulfidrila , Aminas , Óxidos de Enxofre
14.
FASEB J ; 34(5): 6570-6581, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32246801

RESUMO

Dysfunction of the circadian rhythm is one of most common nonmotor symptoms in Parkinson's disease (PD), but the molecular role of the circadian rhythm in PD is unclear. We here showed that inactivation of brain and muscle ARNT-like 1 (BMAL1) in 1-methyl-4-phenyl-1,2,4,5-tetrahydropyridine (MPTP)-treated mice resulted in obvious motor functional deficit, loss of dopaminergic neurons (DANs) in the substantia nigra pars compacta (SNpc), decrease of dopamine (DA) transmitter, and increased activation of microglia and astrocytes in the striatum. Time on the rotarod or calorie consumption, and food and water intake were reduced in the Bmal1-/- mice after MPTP treatment, suggesting that absence of Bmal1 may exacerbate circadian and PD motor function. We observed a significant reduction of DANs (~35%) in the SNpc, the tyrosine hydroxylase protein level in the striatum (~60%), the DA (~22%), and 3,4-dihydroxyphenylacetic acid content (~29%), respectively, in MPTP-treated Bmal1-/- mice. Loss of Bmal1 aggravated the inflammatory reaction both in vivo and in vitro. These findings suggest that BMAL1 may play an essential role in the survival of DANs and maintain normal function of the DA signaling pathway via regulating microglia-mediated neuroinflammation in the brain.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , Fatores de Transcrição ARNTL/fisiologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/imunologia , Inflamação/patologia , Microglia/patologia , Doença de Parkinson/patologia , Animais , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Inflamação/etiologia , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neurotoxinas/toxicidade , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo
15.
Adv Exp Med Biol ; 1206: 221-236, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31776988

RESUMO

Epigenetics refers to reversible and hereditary changes in gene expression without alterations in DNA sequences, such as DNA methylation, histone modification and chromatin remodelling. It was first proposed by Waddington in the book Introduction to Modern Genetics in 1939. Autophagy includes at least four processes: autophagy induction, autophagosome formation, autophagosome fusion with lysosomes and lysosomal degradation of cytoplasmic components. The whole process is complex and dynamic, and involves at least 30 autophagy-related proteins. This degradative machinery is regulated by multiple signal molecules. Autophagy was once considered to be a cytoplasmic event; however, in recent years, emerging evidence suggests that nuclear components (transcription factors, histone modification, microRNAs, etc.) also play an important role in autophagy regulation (Baek and Kim 2017). Among them, epigenetic regulation of autophagy has gained much attention. The epigenetic machinery can not only modify autophagy-related genes but also affect some signal molecule genes that regulate autophagy, thus impacting their transcription and subsequent autophagy. This chapter focuses on the role and recent progress in autophagy regulation by DNA methylation and histone modifications. The role of non-coding RNAs such as microRNA in autophagy regulation will be covered in other chapters.


Assuntos
Autofagia , Metilação de DNA , Epigênese Genética , Código das Histonas , Animais , Autofagia/genética , Humanos
16.
Neurotoxicology ; 73: 175-182, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30978411

RESUMO

Olfactory impairment is an early feature of patients with Parkinson's disease (PD). Retrospective epidemiological studies reported lower scores on the University of Pennsylvania Smell Identification Test (UPSIT) in non-smokers than smokers with PD and showed an inverse correlation between susceptibility to PD and a person's history of smoking. But the mechanisms by which cigarettes affect olfaction in PD are not fully understood. So we investigated the effect of nicotine on the olfactory function in 1-methyl-4-phenyl-1, 2, 3, 6 tetrahydropyridine (MPTP)-treated mice. We observed that nicotine improved locomotor activity and protection against dopaminergic neuron loss in the midbrain in MPTP-treated mice. Compared to controls, MPTP-treated mice showed a deficit of odor discrimination and odor detection, which were alleviated by nicotine treatment. But no significant changes were found in olfactory memory in MPTP-treated mice. Moreover, we detected a marked decrease of Choline acetyltransferase (ChAT) expression in the olfactory bulb (OB) in MPTP-treated mice, which was also attenuated by nicotine administration. In addition, nicotine ameliorated the loss of cholinergic neurons and dopaminergic innervation in the horizontal limb of the diagonal band (HDB), which is the primary origin of cholinergic input to the OB. Our results suggested that nicotine could improve the olfactory impairment by protecting cholinergic systems in the OB of MPTP-treated mice. And nicotine protection of cholinergic systems in the OB is relevant to attenuating dopaminergic neuron loss in the midbrain and HDB.


Assuntos
Antiparkinsonianos/farmacologia , Comportamento Animal/efeitos dos fármacos , Intoxicação por MPTP/tratamento farmacológico , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Bulbo Olfatório/efeitos dos fármacos , Percepção Olfatória/efeitos dos fármacos , Olfato/efeitos dos fármacos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Colina O-Acetiltransferase/metabolismo , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Locomoção/efeitos dos fármacos , Intoxicação por MPTP/induzido quimicamente , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Bulbo Olfatório/metabolismo , Bulbo Olfatório/patologia , Bulbo Olfatório/fisiopatologia , Transdução de Sinais , Tirosina 3-Mono-Oxigenase/metabolismo
17.
Physiol Plant ; 167(4): 564-584, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30561011

RESUMO

Abrupt drought-flood alternation (T1) is a meteorological disaster that frequently occurs during summer in southern China and the Yangtze river basin, often causing a significant loss of rice production. In this study, the response mechanism of yield decline under abrupt drought-flood alternation stress at the panicle differentiation stage was analyzed by looking at the metabolome, proteome as well as yield and physiological and biochemical indexes. The results showed that drought and flood stress caused a decrease in the yield of rice at the panicle differentiation stage, and abrupt drought-flood alternation stress created a synergistic effect for the reduction of yield. The main reason for the decrease of yield per plant under abrupt drought-flood alternation was the decrease of seed setting rate. Compared with CK0 (no drought and no flood), the net photosynthetic rate and soluble sugar content of T1 decreased significantly and its hydrogen peroxidase, superoxide dismutase, peroxidase activity increased significantly. The identified differential metabolites and differentially expressed proteins indicated that photosynthesis metabolism, energy metabolism pathway and reactive oxygen species response have changed strongly under abrupt drought-flood alteration stress, which are factors that leads to the rice grain yield reduction.


Assuntos
Secas , Inundações , Oryza/fisiologia , Estresse Fisiológico , China , Metabolismo Energético , Metaboloma , Fotossíntese , Proteoma , Espécies Reativas de Oxigênio
18.
Front Aging Neurosci ; 10: 378, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30515090

RESUMO

Neuroinflammation and autophagy dysfunction are closely related to the development of neurodegeneration such as Parkinson's disease (PD). However, the role of autophagy in microglia polarization and neuroinflammation is poorly understood. TNF-α, which is highly toxic to dopaminergic neurons, is implicated as a major mediator of neuroinflammation in PD. In this study, we found that TNF-α resulted in an impairment of autophagic flux in microglia. Concomitantly, an increase of M1 marker (iNOS/NO, IL-1ß, and IL-6) expression and reduction of M2 marker (Arginase1, Ym1/2, and IL-10) were observed in TNF-α challenged microglia. Upregulation of autophagy via serum deprivation or pharmacologic activators (rapamycin and resveratrol) promoted microglia polarization toward M2 phenotype, as evidenced by suppressed M1 and elevated M2 gene expression, while inhibition of autophagy with 3-MA or Atg5 siRNA consistently aggravated the M1 polarization induced by TNF-α. Moreover, Atg5 knockdown alone was sufficient to trigger microglia activation toward M1 status. More important, TNF-α stimulated microglia conditioned medium caused neurotoxicity when added to neuronal cells. The neurotoxicity was further aggravated when Atg5 knockdown in BV2 cells but alleviated when microglia pretreatment with rapamycin. Activation of AKT/mTOR signaling may contribute to the changes of autophagy and inflammation as the AKT specific inhibitor perifosine prevented the increase of LC3II (an autophagic marker) in TNF-α stimulated microglia. Taking together, our results demonstrate that TNF-α inhibits autophagy in microglia through AKT/mTOR signaling pathway, and autophagy enhancement can promote microglia polarization toward M2 phenotype and inflammation resolution.

19.
Brain Behav Immun ; 73: 603-614, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29981830

RESUMO

Neuroinflammation and excessive ß-amyloid1-42 (Aß1-42) generation contribute to the pathogenesis of Alzheimer's disease (AD). Emerging evidence has demonstrated that hydrogen sulfide (H2S), an endogenous gasotransmitter, produces therapeutic effects in AD; however, the underlying mechanisms remain largely elusive. In the present study, we investigated the effects of H2S on exogenous ATP-induced inflammation and Aß1-42 production in both BV-2 and primary cultured microglial cells and analyzed the potential mechanism(s) mediating these effects. Our results showed that NaHS, an H2S donor, inhibited exogenous ATP-stimulated inflammatory responses as manifested by the reduction of pro-inflammatory cytokines, ROS and activation of nuclear factor-κB (NF-κB) pathway. Furthermore, NaHS also suppressed the enhanced production of Aß1-42 induced by exogenous ATP, which is probably due to its inhibitory effect on exogenous ATP-boosted expression of amyloid precursor protein (APP) and activation of ß- and γ-secretase enzymes. Thereafter, we found that exogenous ATP-induced inflammation and Aß1-42 production requires the activation of signal transducer and activator of transcription 3 (STAT3) and cathepsin S (Cat S) as inhibition of the activity of either proteins attenuated the effect of exogenous ATP. Intriguingly, NaHS suppressed exogenous ATP-induced phosphorylation of STAT3 and the activation of Cat S. In addition, we observed that NaHS led to the persulfidation of Cat S at cysteine-25. Importantly, mutation of cysteine-25 into serine attenuated the activity of Cat S stimulated by exogenous ATP and subsequent inflammation and Aß1-42 production, indicating its involvement in H2S-mediated effect. Taken together, our data provide a novel understanding of H2S-mediated effect on neuroinflammation and Aß1-42 production by suppressing the activation of STAT3 and Cat S.


Assuntos
Sulfeto de Hidrogênio/farmacologia , Microglia/efeitos dos fármacos , Neuroimunomodulação/efeitos dos fármacos , Trifosfato de Adenosina/efeitos adversos , Trifosfato de Adenosina/farmacologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Animais , Catepsinas/efeitos dos fármacos , Catepsinas/fisiologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Células HEK293 , Humanos , Sulfeto de Hidrogênio/metabolismo , Inflamação , Camundongos , Fragmentos de Peptídeos/efeitos dos fármacos , Fragmentos de Peptídeos/metabolismo , Fosforilação , Fator de Transcrição STAT3/efeitos dos fármacos , Fator de Transcrição STAT3/fisiologia , Transdução de Sinais/efeitos dos fármacos , Sulfetos/farmacologia
20.
Oxid Med Cell Longev ; 2018: 4854732, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29849897

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease and is known to involve circadian dysfunction and oxidative stress. Although antioxidative defense is regulated by the molecular circadian clock, few studies have examined their function in PD and their regulation by silent information regulator 1 (SIRT1). We hypothesize that reduced antioxidative activity in models of PD results from dysfunction of the molecular circadian clock via the SIRT1 pathway. We treated rats and SH-SY5Y cells with 6-hydroxydopamine (6-OHDA) and measured the expression of core circadian clock and associated nuclear receptor genes using real-time quantitative PCR as well as levels of SIRT1, brain and muscle Arnt-like protein 1 (BMAL1), and acetylated BMAL1 using Western blotting. We found that 6-OHDA treatment altered the expression patterns of clock and antioxidative molecules in vivo and in vitro. We also detected an increased ratio of acetylated BMAL1:BMAL1 and a decreased level of SIRT1. Furthermore, resveratrol, an activator of SIRT1, decreased the acetylation of BMAL1 and inhibited its binding with CRY1, thereby reversing the impaired antioxidative activity induced by 6-OHDA. These results suggest that a dysfunctional circadian clock contributes to an abnormal antioxidative response in PD via a SIRT1-dependent BMAL1 pathway.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Antioxidantes/metabolismo , Relógios Circadianos/fisiologia , Doença de Parkinson Secundária/metabolismo , Sirtuína 1/metabolismo , Animais , Relógios Circadianos/efeitos dos fármacos , Masculino , Oxidopamina , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...