Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001851

RESUMO

Brassica napus is currently the principal field crop for producing materials for primary, secondary and tertiary industries. B. napus shoots at stem elongation stage are rich in anthocyanins, vitamin C and mineral elements such as selenium, calcium and zinc, and represent a new type of green vegetable. However, the high crude fiber (CF) content of B. napus shoots affects their taste, and few studies have focused on the quality traits of these vegetables. In this study, we investigated five traits related to the CF components, including neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), hemicellulose (Hem) and cellulose (Cel), of B. napus shoots. Whole-genome resequencing at a depth of ∼20× was utilized to genotype an association panel of 202 diverse accessions, which resulted in the identification of 6,093,649 single nucleotide polymorphisms (SNPs) and 996,252 indels, respectively. A genome-wide association study (GWAS) was performed for the five CF-related traits based on the phenotypic data observed in four environments. A total of 1,285 significant SNPs were detected at the threshold of -log10 (p) = 5.16, and 97 significant association regions were obtained. In addition, seven candidate genes located on chromosomes A2 (one gene), A8 (three genes), A9 (two genes) and C9 (one gene) related to CF traits were identified, and ten lines containing low CF contents were selected as excellent germplasm resources for breeding. Our results contributed new insights into the genetic basis of CF traits and suggested germplasm resources for the quality improvement of B. napus shoots.

2.
Theor Appl Genet ; 137(7): 176, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969812

RESUMO

Circular RNAs (circRNAs), a class of non-coding RNA molecules, are recognized for their unique functions; however, their responses to herbicide stress in Brassica napus remain unclear. In this study, the role of circRNAs in response to herbicide treatment was investigated in two rapeseed cultivars: MH33, which confers non-target-site resistance (NTSR), and EM28, which exhibits target-site resistance (TSR). The genome-wide circRNA profiles of herbicide-stressed and non-stressed seedlings were analyzed. The findings indicate that NTSR seedlings exhibited a greater abundance of circRNAs, shorter lengths of circRNAs and their parent genes, and more diverse functions of parent genes compared with TSR seedlings. Compared to normal-growth plants, the herbicide-stressed group exhibited similar trends in the number of circRNAs, functions of parent genes, and differentially expressed circRNAs as observed in NTSR seedlings. In addition, a greater number of circRNAs that function as competing microRNA (miRNA) sponges were identified in the herbicide stress and NTSR groups compared to the normal-growth and TSR groups, respectively. The differentially expressed circRNAs were validated by qPCR. The differntially expressed circRNA-miRNA networks were predicted, and the mRNAs targeted by these miRNAs were annotated. Our results suggest that circRNAs play a crucial role in responding to herbicide stress, exhibiting distinct responses between NTSR and TSR in rapeseed. These findings offer valuable insights into the mechanisms underlying herbicide resistance in rapeseed.


Assuntos
Brassica napus , Regulação da Expressão Gênica de Plantas , Resistência a Herbicidas , Herbicidas , RNA Circular , RNA de Plantas , Brassica napus/genética , Brassica napus/efeitos dos fármacos , Brassica napus/crescimento & desenvolvimento , RNA Circular/genética , Herbicidas/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , RNA de Plantas/genética , Resistência a Herbicidas/genética , Plântula/genética , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Estresse Fisiológico/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Genoma de Planta
3.
Plant Biotechnol J ; 22(6): 1636-1648, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38308663

RESUMO

Branch angle (BA) is a critical morphological trait that significantly influences planting density, light interception and ultimately yield in plants. Despite its importance, the regulatory mechanism governing BA in rapeseed remains poorly understood. In this study, we generated 109 transcriptome data sets for 37 rapeseed accessions with divergent BA phenotypes. Relative to adaxial branch segments, abaxial segments accumulated higher levels of auxin and exhibited lower expression of six TCP1 homologues and one GA20ox3. A co-expression network analysis identified two modules highly correlated with BA. The modules contained homologues to known BA control genes, such as FUL, YUCCA6, TCP1 and SGR3. Notably, a homoeologous exchange (HE), occurring at the telomeres of A09, was prevalent in large BA accessions, while an A02-C02 HE was common in small BA accessions. In their corresponding regions, these HEs explained the formation of hub gene hotspots in the two modules. QTL-seq analysis confirmed that the presence of a large A07-C06 HE (~8.1 Mb) was also associated with a small BA phenotype, and BnaA07.WRKY40.b within it was predicted as candidate gene. Overexpressing BnaA07.WRKY40.b in rapeseed increased BA by up to 20°, while RNAi- and CRISPR-mediated mutants (BnaA07.WRKY40.b and BnaC06.WRKY40.b) exhibited decreased BA by up to 11.4°. BnaA07.WRKY40.b was exclusively localized to the nucleus and exhibited strong expression correlations with many genes related to gravitropism and plant architecture. Taken together, our study highlights the influence of HEs on rapeseed plant architecture and confirms the role of WRKY40 homologues as novel regulators of BA.


Assuntos
Locos de Características Quantitativas , Transcriptoma , Transcriptoma/genética , Locos de Características Quantitativas/genética , Brassica rapa/genética , Regulação da Expressão Gênica de Plantas , Brassica napus/genética , Brassica napus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Fenótipo , Genes de Plantas/genética
4.
Plant Cell Environ ; 46(7): 2255-2272, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37102754

RESUMO

The application of herbicides is the most effective strategy for weed control and the development of herbicide-resistant crops will facilitate the weed management. The acetolactate synthase-inhibiting herbicide, tribenuron-methyl (TBM), is broadly used for weed control. However, its application in rapeseed field is restricted since rapeseed is sensitive to TBM. Herein, an integrated study of cytological, physiological and proteomic analysis of the TBM-resistant rapeseed mutant M342 and its wild-type (WT) plants was conducted. After TBM spraying, M342 showed improved tolerance to TBM, and proteins implicated in non-target-site resistance (NTSR) to herbicides had a significantly higher level in M342 as compared with the WT. Differentially accumulated proteins (DAPs) between these two genotypes were enriched in glutathione metabolism and oxidoreduction coenzyme metabolic process, which protected the mutant from oxidative stress triggered by TBM. Important DAPs related to stress or defence response were up-accumulated in M342 regardless of the TBM treatment, which might serve as the constitutive part of NTSR to TBM. These results provide new clues for further exploration of the NTSR mechanism in plants and establish a theoretical basis for the development of herbicide-resistant crops.


Assuntos
Brassica napus , Herbicidas , Brassica napus/genética , Brassica napus/metabolismo , Proteômica , Sulfonatos de Arila/farmacologia , Herbicidas/toxicidade , Resistência a Herbicidas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Plants (Basel) ; 12(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36903869

RESUMO

The emergence of brassica yellow virus (BrYV) has increasingly damaged crucifer crops in China in recent years. In 2020, a large number of oilseed rape in Jiangsu showed aberrant leaf color. A combined RNA-seq and RT-PCR analysis identified BrYV as the major viral pathogen. A subsequent field survey showed that the average incidence of BrYV was 32.04%. In addition to BrYV, turnip mosaic virus (TuMV) was also frequently detected. As a result, two near full-length BrYV isolates, BrYV-814NJLH and BrYV-NJ13, were cloned. Based on the newly obtained sequences and the reported BrYV and turnip yellow virus (TuYV) isolates, a phylogenetic analysis was performed, and it was found that all BrYV isolates share a common root with TuYV. Pairwise amino acid identity analysis revealed that both P2 and P3 were conserved in BrYV. Additionally, recombination analysis revealed seven recombinant events in BrYV as TuYV. We also attempted to determine BrYV infection by quantitative leaf color index, but no significant correlation was found between the two. Systemic observations indicated that BrYV-infected plants had different symptoms, such as no symptom, purple stem base and red old leaves. Overall, our work proves that BrYV is closely related to TuYV and could be considered as an epidemic strain for oilseed rape in Jiangsu.

6.
Foods ; 12(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36673495

RESUMO

BACKGROUND: Brassica napus is one of the most important oil crops in the world, and B. napus shoots are nutrient-rich fresh vegetables. The crude fiber (CF) component is one of the most important factors affecting the taste quality of B. napus shoots, but the factors underlying the desirable low-CF trait remain poorly understood. METHODS: In this study, a high-density single-nucleotide polymorphism (SNP) map was used to map quantitative trait loci (QTLs) for five CF-related traits in a recombinant inbred population. RESULTS: A total of 49 QTLs were obtained in four environments, including eleven, twelve, eight, twelve and six QTLs for content of neutral detergent fiber, acid detergent fiber, acid detergent lignin, hemicellulose and cellulose, respectively. The phenotypic variation explained by single QTL ranged from 4.62% to 14.76%. Eight of these QTLs were further integrated into four unique QTLs, which controlled two different traits simultaneously. Five CF-component-related candidate genes were identified, among which BnaC03g07110D and BnaC07g21271D were considered to be the most likely candidate genes. In addition, five lines with low CF content were selected, which can be used as excellent germplasm resources in breeding. CONCLUSIONS: The QTLs identified in this study will contribute to our understanding of the genetic mechanism of CF and can be used as targets for reducing CF content in B. napus shoots. In addition, this study also provided excellent germplasm resources for low CF content breeding.

7.
Front Plant Sci ; 13: 1040511, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407633

RESUMO

Sclerotinia disease and weeds of Brassica napus greatly reduce crop yields. However, brassinolides can improve the resistance of plants to sclerotinia diseases and herbicides. In this study, we investigated the effects of brassinolide on the occurrence, physiological indices, yield, and gene expression of Fanming No. 1 seeds under sclerotinia and glufosinate stress. The results showed that soaking of the seeds in 0.015% brassinolide for 6 h reduced the incidence of sclerotinia by 10%. Additionally, in response to glufosinate stress at the seedling stage, the enzyme activities of catalase and superoxide dismutase increased by 9.6 and 19.0 U/gFW/min, respectively, and the soluble sugar content increased by 9.4 mg/g, increasing the stress resistance of plants and yield by 2.4%. LHCB1, fabF, psbW, CYP90A1, ALDH3F1, ACOX1, petF, and ACSL were screened by transcriptome analysis. ALDH3F1 and CYP90A1 were identified as key genes. Following glufosinate treatment, transgenic plants overexpressing ALDH3F1 and CYP90A1 were found to be resistant to glufosinate, and the expression levels of the ALDH3F1 and CYP90A1 were 1.03-2.37-fold as high as those in the control. The expression level of ATG3, which is an antibacterial gene related to sclerotinia disease, in transgenic plants was 2.40-2.37-fold as high as that in the control. Our results indicate that these two key genes promote plant resistance to sclerotinia and glufosinate. Our study provides a foundation for further studies on the molecular mechanisms of rapeseed resistance breeding and selection of new resistant varieties.

8.
Front Plant Sci ; 13: 850330, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360306

RESUMO

Chloroplast development is crucial for photosynthesis and plant growth and many factors are involved in its regulation. The regulatory mechanism differs in different green tissues, and previous studies have focused on chloroplasts in leaves. In this study, a mutant with sepal-specific chlorophyll-deficiency was observed in Brassica napus and named as df74. Genetic analysis indicated that the phenotype was controlled by a single recessive nuclear gene. The gene was located on chromosome C08 by bulked-segregant analysis with whole-genome sequencing, which was designated as BnC08.cds. To fine-map the BnC08.cds, a F2 population was created from the cross of df74 and Zhongshuang11 (ZS11). Finally, the BnC08.cds was fine-mapped in the region between the single-nucleotide polymorphism (SNP) markers M5 and M6, corresponding to a 228.72 kb interval of the B. napus "ZS11" genome. Eighteen genes were predicted in the target region, and it was speculated that BnaC08G0442100ZS was the most likely candidate gene based on the results of transcriptome analyses and sequence variation analyses. These results provide a foundation to explore the regulation of chloroplast development in sepals.

9.
Front Plant Sci ; 12: 716935, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691098

RESUMO

Sclerotinia stem rot caused by Sclerotinia sclerotiorum is a devastating disease for many important crops worldwide, including Brassica napus. Although numerous studies have been performed on the gene expression changes in B. napus and S. sclerotiorum, knowledge regarding the molecular mechanisms of B. napus-S. sclerotiorum interactions is limited. Here, we revealed the changes in the gene expression and related pathways in both B. napus and S. sclerotiorum during the sclerotinia stem rot (SSR) infection process using transcriptome analyses. In total, 1,986, 2,217, and 16,079 differentially expressed genes (DEGs) were identified in B. napus at 6, 24, and 48 h post-inoculation, respectively, whereas 1,511, 1,208, and 2,051 DEGs, respectively, were identified in S. sclerotiorum. The gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed that most of the hormone-signaling pathways in B. napus were enriched, and thus, the hormone contents at four stages were measured. The DEGs and hormone contents revealed that salicylic acid was activated, while the jasmonic acid pathway was repressed at 24 h post-inoculation. Additionally, the expressional patterns of the cell wall-degrading enzyme-encoding genes in S. sclerotiorum and the hydrolytic enzymes in B. napus were consistent with the SSR infection process. The results contribute to a better understanding of the interactions between B. napus and S. sclerotiorum and the development of future preventive measures against SSR.

10.
DNA Cell Biol ; 40(3): 441-456, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33600242

RESUMO

IGT family genes function critically to regulate lateral organ orientation in plants. However, little information is available about this family of genes in Brassica napus. In this study, 27 BnIGT genes were identified on 16 chromosomes and divided into seven clades, namely LAZY1∼LAZY6 and TAC1 (Tiller Angle Control 1), based on their phylogenetic relationships. Duplication analysis revealed that 91.1% of the gene pairs were derived from whole-genome duplication. Most BnIGT genes had a similar structural pattern with one or two very short exons followed by a long and a shorter exon. Common and specific motifs were identified among the seven clades, and motif 1, containing the family-specific GφL(A/T)IGT sequence, was observed in all clades except LAZY5. Three types of cis-elements pertinent to transcription factor binding, light responses, and hormone signaling were detected in the BnIGT promoters. Intriguingly, more than half of the BnIGT genes exhibited no or very low expression in various tissues, and the LAZY1 and TAC1 clade members showed distinct tissue expression preferences. Coexpression analysis revealed that the LAZY1 members had strong associations with cell wall biosynthesis genes. This analysis provides a deeper understanding of the BnIGT gene family and will facilitate further deduction of their role in regulating plant architecture in B. napus.


Assuntos
Brassica napus , Regulação da Expressão Gênica de Plantas/fisiologia , Família Multigênica , Proteínas de Plantas , Tetraploidia , Brassica napus/genética , Brassica napus/metabolismo , Estudo de Associação Genômica Ampla , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética
11.
Theor Appl Genet ; 133(10): 2811-2824, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32556395

RESUMO

KEY MESSAGE: A double mutant 5N of rapeseed was obtained with a synergistic effect of high resistance to sulfonylurea herbicide. Excellent weed control was observed in Ning R201 created by 5N resources. Sulfonylurea herbicides, which inhibit acetohydroxyacid synthase (AHAS), have become the most widely used herbicides worldwide. However, weed control in rapeseed crop production remains challenging in China due to the shortage of available herbicide-resistant cultivars. In this study, we developed a rapeseed line (PN19) with sulfonylurea herbicide resistance through seed mutagenesis. Molecular analysis revealed a Trp-574-Leu mutation in BnAHAS1-2R of PN19 according to the sequence of Arabidopsis thaliana, and an allele-specific cleaved amplified polymorphic sequence marker was developed to target the point mutation. A double mutant (5N) with very high sulfonylurea resistance was then created through pyramiding two mutant genes of PN19 and M342 by molecular marker-assisted selection. Herbicide resistance identification, toxicology testing, and an in vitro enzyme activity assay of AHAS in 5N indicated that each mutant was four and eight times more resistant to sulfonylurea than M342 and PN19, respectively. Protein structure analysis of AHAS1 demonstrated that the leucine of mutant Trp-574-Leu destroyed the original π-plane stacking effect of the local region for tribenuron-methyl binding, leading to herbicide tolerance. Isobole graph analysis showed a significant synergistic effect of the combination of two mutant genes in 5N for improved tolerance to sulfonylurea herbicides. Finally, we bred rapeseed variety Ning R201 using 5N herbicide resistance resources, and observed excellent weed control performance. Together, these results demonstrate the practical value of 5N application for optimizing and simplifying rapeseed cultivation in China.


Assuntos
Acetolactato Sintase/genética , Brassica napus/genética , Resistência a Herbicidas/genética , Mutação Puntual , Compostos de Sulfonilureia/farmacologia , Alelos , Sequência de Aminoácidos , Brassica napus/enzimologia , Cruzamentos Genéticos , Genes de Plantas , Herbicidas/farmacologia , Mutagênese , Conformação Proteica , Controle de Plantas Daninhas
12.
Biotechnol Biofuels ; 13: 42, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32175009

RESUMO

BACKGROUND: Brassica napus provides approximately 13-16% of global vegetable oil for human consumption and biodiesel production. Plant height (PH) is a key trait that affects plant architecture, seed yield and harvest index. However, the genetic mechanism of PH in B. napus is poorly understood. RESULTS: A dwarf mutant df59 was isolated from a large-scale screening of an ethyl methanesulphonate-mutagenized rapeseed variety Ningyou 18. A genetic analysis showed that the dwarfism phenotype was controlled by one semi-dominant gene, which was mapped on C9 chromosome by quantitative trait loci sequencing analysis and designated as BnaDwf.C9. To fine-map BnaDwf.C9, two F2 populations were constructed from crosses between conventional rapeseed cultivars (Zhongshuang 11 and Holly) and df59. BnaDwf.C9 was fine-mapped to the region between single-nucleotide polymorphism (SNP) markers M14 and M4, corresponding to a 120.87-kb interval of the B. napus 'Darmor-bzh' genome. Within this interval, seven, eight and nine annotated or predicted genes were identified in "Darmor-bzh", "Ningyou 7" and "Zhongshuang 11" reference genomes, respectively. In addition, a comparative transcriptome analysis was performed using stem tips from Ningyou 18 and df59 at the stem elongation stage. In total, 3995 differentially expressed genes (DEGs) were identified. Among them, 118 DEGs were clustered in plant hormone-related signal transduction pathways, including 81 DEGs were enriched in auxin signal transduction. Combining the results of fine-mapping and transcriptome analyses, BnaC09g20450D was considered a candidate gene for BnaDwf.C9, which contains a SNP that co-segregated in 4746 individuals. Finally, a PCR-based marker was developed based on the SNP in BnaC09g20450D. CONCLUSIONS: The combination of quantitative trait loci sequencing, fine-mapping and genome-wide transcriptomic analysis revealed one candidate gene located within the confidence interval of 120.87-kb region. This study provides a new genetic resource for semi-dwarf breeding and new insights into understanding the genetic architecture of PH in B. napus.

13.
Breed Sci ; 69(2): 316-322, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31481841

RESUMO

The Mutsu-Isuzu cytoplasmic male sterility (MI CMS) system is one of the three-line hybrid systems used in China. As we know, the hybrid system is tightly associated with the yield variation in F1 heterosis, while the restorer gene for the MI CMS (Rfm) has not been finely mapped for further application in marker-assisted selection (MAS). In this study, the sets of near-isogenic lines (NILs) of Rfm in two different genetic backgrounds were hybridized with the genome-wide 60 K single-nucleotide polymorphism (SNP) chip of Brassica for screening the possible associated genomic region of Rfm. Through screening genotypes with SNP loci and sequencing the candidate loci, one 2.5 Mb physical region (covering three scaffolds) on chrA09 was identified as the candidate for the Rfm region. Then, the SSR markers for the target scaffolds were used to detect the recombination in an F2 population and narrowed the Rfm gene within the genetic distance of 0.52 cM, equivalent to a 350 kb physical segment. Moreover, the markers were tested to improve new elite restoration lines and to assess the percentage of hybrid seeds. Our results could potentially accelerate the map-based cloning of the Rfm gene to benefit rapeseed breeding.

14.
Plant Cell Rep ; 38(8): 883-897, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31011789

RESUMO

KEY MESSAGE: BnaIAA7 crosstalk with BR signaling is mediated by the interaction between BnaARF8 and BnaBZR1 to regulate rapeseed plant morphogenesis. Auxin (indole-3-acetic acid, IAA) and brassinosteroids (BRs) are essential regulators of plant morphogenesis. However, their roles in rapeseed have not been reported. Here, we identified an extremely dwarf1 (ed1) mutant of rapeseed that displays reduced stature, short hypocotyls, as well as wavy and curled leaves. We isolated ED1 by map-based cloning, and found that it encodes a protein homologous to AtIAA7. ED1 acts as a repressor of IAA signaling, and IAA induces its degradation through its degron motif. A genomic-synteny analysis revealed that ED1 has four homologs in rapeseed, but two were not expressed. Analyses of transcriptomes and of various mutant BnaIAA7s in transgenic plants revealed that the three expressed BnaIAA7 homologs had diverse expression patterns. ED1/BnaC05.IAA7 predominantly functioned in stem elongation, BnaA05.IAA7 was essential for reproduction, while BnaA03.IAA7 had the potential to reduce plant height. Physical interaction assays revealed that the three BnaIAA7 homologs interacted in different ways with BnaTIRs/AFBs and BnaARFs, which may regulate the development of specific organs. Furthermore, BnaARF8 could directly interact with the BnaIAA7s and BnaBZR1. We propose that BnaIAA7s interact with BR signaling via BnaARF8 and BnaBZR1 to regulate stem elongation in rapeseed.


Assuntos
Brassica napus/metabolismo , Brassinosteroides/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Brassica napus/anatomia & histologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
15.
Front Genet ; 9: 399, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30294343

RESUMO

Rapeseed (Brassica napus L.) is a vital oil crop worldwide. High oleic acid content is a desirable quality trait for rapeseed oil, which makes it more beneficial to human health. However, many germplasm resources with high oleic acid content in rapeseed have not been evaluated with regard to their genotypes, making it difficult to select the best strains with this trait for the breeding of high oleic acid rapeseed variety. This work was to explore the gene-regulation mechanism of this trait using a new super-high oleic acid content (∼85%) line N1379T as genetic material. In this study, the sequences of four homologous fatty acid desaturase (BnFAD2) genes were compared between super-high (∼85%, N1379T) and normal (∼63%) oleic acid content lines. Results showed that there were two single-nucleotide polymorphisms (SNPs) in BnFAD2-1 and BnFAD2-2, respectively, which led to the amino acid changes (E106K and G303E) in the corresponding proteins. Functional analysis of both genes in yeast confirmed that these SNPs were loss-of-function mutations, thus limiting the conversion of oleic acid to linoleic acid and resulting in the considerable accumulation of oleic acid. Moreover, two specific cleaved amplified polymorphic sequences (CAPS) markers for the two SNPs were developed to identify genotypes of each line in the F2 and BC1 populations. Furthermore, these two mutant loci of BnFAD2-1 and BnFAD2-2 genes were positively associated with elevated oleic acid levels and had a similar effect with regard to the increase of oleic acid content. Taken together, these two novel SNPs in two different BnFAD2 genes jointly regulated the high oleic acid trait in this special germplasm. The study provided insight into the genetic regulation involved in oleic acid accumulation and highlighted the use of new alleles of BnFAD2-1 and BnFAD2-2 in breeding high oleic acid rapeseed varieties.

16.
BMC Plant Biol ; 18(1): 49, 2018 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-29566663

RESUMO

BACKGROUND: The fatty acid composition of B. napus' seeds determines the oil's nutritional and industrial values, and affects seed germination. Many studies have reported correlations among C16:0, C18:0, C18:1, C18:2 and C18:3 based on phenotypic data; however, the genetic basis of the fatty acid composition in B. napus is still not well understood. RESULTS: In this study, unconditional and conditional quantitative trail locus (QTL) mapping analyses were conducted using a recombinant inbred line in six environments. In total, 21 consensus QTLs each for C16:0, C18:0 and C18:2, 16 for C18:1 and 22 for C18:3 were detected by unconditional mapping. The QTLs with overlapping confidence intervals were integrated into 71 pleiotropically unique QTLs by meta-analysis. Two major QTLs, uuqA5-6 and uuqA5-7, simultaneously affected the fatty acids, except C18:0, in most of environments, with the homologous genes fatty acid desaturase 2 (FAD2) and glycerol-3-phosphate sn-2-acyltransferase 5 (GPAT5) occurring in the confidence interval of uuqA5-6, while phosphatidic acid phosphohydrolase 1 (PAH1) was assigned to uuqA5-7. Moreover, 49, 30, 48, 60 and 45 consensus QTLs were detected for C16:0, C18:0, C18:1, C18:2 and C18:3, respectively, by the conditional mapping analysis. In total, 128 unique QTLs were subsequently integrated from the 232 conditional consensus QTLs. A comparative analysis revealed that 63 unique QTLs could be identified by both mapping methodologies, and 65 additional unique QTLs were only identified in conditional mapping. CONCLUSIONS: Thus, conditional QTL mapping for fatty acids may uncover numerous additional QTLs that were inhibited by the effects of other traits. These findings provide useful information for better understanding the genetic relationships among fatty acids at the QTL level.


Assuntos
Brassica napus/metabolismo , Locos de Características Quantitativas/genética , Sementes/metabolismo , Brassica napus/genética , Ácidos Graxos/metabolismo , Germinação/genética , Germinação/fisiologia , Sementes/genética
17.
Front Plant Sci ; 9: 89, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29472937

RESUMO

The apetalous trait of rapeseed (Brassica napus, AACC, 2n = 38) is important for breeding an ideal high-yield rapeseed with superior klendusity to Sclerotinia sclerotiorum. Currently, the molecular mechanism underlying the apetalous trait of rapeseed is unclear. In this study, 14 petal regulators genes were chosen as target genes (TGs), and the expression patterns of the 14 TGs in the AH population, containing 189 recombinant inbred lines derived from a cross between apetalous "APL01" and normal "Holly," were analyzed in two environments using qRT-PCR. Phenotypic data of petalous degree (PDgr) in the AH population were obtained from the two environments. Both quantitative trait transcript (QTT)-association mapping and expression QTL (eQTL) analyses of TGs expression levels were performed to reveal regulatory relationships among TGs and PDgr. QTT mapping for PDgr determined that PLURIPETALA (PLP) was the major negative QTT associated with PDgr in both environments, suggesting that PLP negatively regulates the petal development of line "APL01." The QTT mapping of PLP expression levels showed that CHROMATIN-REMODELING PROTEIN 11 (CHR11) was positively associated with PLP expression, indicating that CHR11 acts as a positive regulator of PLP expression. Similarly, QTT mapping for the remaining TGs identified 38 QTTs, associated with 13 TGs, and 31 QTTs, associated with 10 TGs, respectively, in the first and second environments. Additionally, eQTL analyses of TG expression levels showed that 12 and 11 unconditional eQTLs were detected in the first and second environment, respectively. Based on the QTTs and unconditional eQTLs detected, we presented a hypothetical molecular regulatory network in which 14 petal regulators potentially regulated the apetalous trait in "APL01" through the CHR11-PLP pathway. PLP acts directly as the terminal signal integrator negatively regulating petal development in the CHR11-PLP pathway. These findings will aid in the understanding the molecular mechanism underlying the apetalous trait of rapeseed.

18.
PLoS One ; 12(9): e0184917, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28950015

RESUMO

Acetohydroxyacid synthase (AHAS), also called acetolactate synthase, is a key enzyme involved in the first step of the biosynthesis of the branched-chain amino acids valine, isoleucine and leucine. Acetohydroxyacid synthase-inhibiting herbicides (AHAS herbicides) are five chemical families of herbicides that inhibit AHAS enzymes, including imidazolinones (IMI), sulfonylureas (SU), pyrimidinylthiobenzoates, triazolinones and triazolopyrimidines. Five AHAS genes have been identified in rapeseed, but little information is available regarding the role of miRNAs in response to AHAS herbicides. In this study, an AHAS herbicides tolerant genotype and a sensitive genotype were used for miRNA comparative analysis. A total of 20 small RNA libraries were obtained of these two genotypes at three time points (0h, 24 h and 48 h) after spraying SU and IMI herbicides with two replicates. We identified 940 conserved miRNAs and 1515 novel candidate miRNAs in Brassica napus using high-throughput sequencing methods combined with computing analysis. A total of 3284 genes were predicted to be targets of these miRNAs, and their functions were shown using GO, KOG and KEGG annotations. The differentiation expression results of miRNAs showed almost twice as many differentiated miRNAs were found in tolerant genotype M342 (309 miRNAs) after SU herbicide application than in sensitive genotype N131 (164 miRNAs). In additiond 177 and 296 miRNAs defined as differentiated in sensitive genotype and tolerant genotype in response to SU herbicides. The miR398 family was observed to be associated with AHAS herbicide tolerance because their expression increased in the tolerant genotype but decreased in the sensitive genotype. Moreover, 50 novel miRNAs from 39 precursors were predicted. There were 8 conserved miRNAs, 4 novel miRNAs and 3 target genes were validated by quantitative real-time PCR experiment. This study not only provides novel insights into the miRNA content of AHAS herbicides tolerant rapeseed in response to AHAS herbicides, but also demonstrates that miRNAs may be involved in AHAS herbicides tolerance.


Assuntos
Acetolactato Sintase/antagonistas & inibidores , Brassica rapa/genética , Herbicidas/farmacologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , MicroRNAs/genética , Acetolactato Sintase/metabolismo , Genótipo
19.
Sci Rep ; 6: 30576, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27460760

RESUMO

Floral transition and petal onset, as two main aspects of flower development, are crucial to rapeseed evolutionary success and yield formation. Currently, very little is known regarding the genetic architecture that regulates flowering time and petal morphogenesis in Brassica napus. In the present study, a genome-wide transcriptomic analysis was performed with an absolutely apetalous and early flowering line, APL01, and a normally petalled line, PL01, using high-throughput RNA sequencing. In total, 13,205 differential expressed genes were detected, of which 6111 genes were significantly down-regulated, while 7094 genes were significantly up-regulated in the young inflorescences of APL01 compared with PL01. The expression levels of a vast number of genes involved in protein biosynthesis were altered in response to the early flowering and apetalous character. Based on the putative rapeseed flowering genes, an early flowering network, mainly comprised of vernalization and photoperiod pathways, was built. Additionally, 36 putative upstream genes possibly governing the apetalous character of line APL01 were identified, and six genes potentially regulating petal origination were obtained by combining with three petal-related quantitative trait loci. These findings will facilitate understanding of the molecular mechanisms underlying floral transition and petal initiation in B. napus.


Assuntos
Brassica napus/genética , Flores/fisiologia , Proteínas de Plantas/genética , Flores/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Fotoperíodo , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/métodos , Análise de Sequência de RNA
20.
Front Plant Sci ; 6: 1164, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26779193

RESUMO

The apetalous genotype is a morphological ideotype for increasing seed yield and should be of considerable agricultural use; however, only a few studies have focused on the genetic control of this trait in Brassica napus. In the present study, a recombinant inbred line, the AH population, containing 189 individuals was derived from a cross between an apetalous line 'APL01' and a normally petalled variety 'Holly'. The Brassica 60 K Infinium BeadChip Array harboring 52,157 single nucleotide polymorphism (SNP) markers was used to genotype the AH individuals. A high-density genetic linkage map was constructed based on 2,755 bins involving 11,458 SNPs and 57 simple sequence repeats, and was used to identify loci associated with petalous degree (PDgr). The linkage map covered 2,027.53 cM, with an average marker interval of 0.72 cM. The AH map had good collinearity with the B. napus reference genome, indicating its high quality and accuracy. After phenotypic analyses across five different experiments, a total of 19 identified quantitative trait loci (QTLs) distributed across chromosomes A3, A5, A6, A9 and C8 were obtained, and these QTLs were further integrated into nine consensus QTLs by a meta-analysis. Interestingly, the major QTL qPD.C8-2 was consistently detected in all five experiments, and qPD.A9-2 and qPD.C8-3 were stably expressed in four experiments. Comparative mapping between the AH map and the B. napus reference genome suggested that there were 328 genes underlying the confidence intervals of the three steady QTLs. Based on the Gene Ontology assignments of 52 genes to the regulation of floral development in published studies, 146 genes were considered as potential candidate genes for PDgr. The current study carried out a QTL analysis for PDgr using a high-density SNP map in B. napus, providing novel targets for improving seed yield. These results advanced our understanding of the genetic control of PDgr regulation in B. napus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...