Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(7): e2306540, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37814370

RESUMO

The nanodelivery system provides a novel direction for disease diagnosis and treatment; however, its delivery effectiveness is restricted by the short biological half-life and inadequate tumor targeting. The immune evasion properties and homologous targeting capabilities of natural cell membranes, particularly those of cancer cell membranes (CCM), have gained significant interest. The integration of CCM and nanoparticles has resulted in the emergence of CCM-based nanoplatforms (CCM-NPs), which have gained significant attention due to their unique properties. CCM-NPs not only prolong the blood circulation time of core nanoparticles, but also direct them for homologous tumor targeting. Herein, the history and development of CCM-NPs as well as how these platforms have been used for biomedical applications are discussed. The application of CCM-NPs for cancer therapy will be described in detail. Translational efforts are currently under way and further research to address key areas of need will ultimately be required to facilitate the successful clinical adoption of CCM-NPs.


Assuntos
Nanopartículas , Neoplasias , Humanos , Neoplasias/terapia , Membrana Celular
2.
Int J Biol Macromol ; 234: 123675, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801230

RESUMO

Sodium caseinate (SC) is widely used as a biological macromolecular emulsifier in oil-in-water (O/W) emulsions. However, the SC-stabilized emulsions were unstable. High-acyl gellan gum (HA) is an anionic macromolecular polysaccharide that improves emulsion stability. This study aimed to investigate the effects of HA addition on the stability and rheological properties of SC-stabilized emulsions. Study results revealed that HA concentrations >0.1 % could increase Turbiscan stability, reduce the volume average particle size, and increase the zeta-potential absolute value of the SC-stabilized emulsions. In addition, HA increased the triple-phase contact angle of SC, transformed SC-stabilized emulsions into non-Newtonian fluids, and effectively inhibited the movement of emulsion droplets. The effect of 0.125 % HA concentration was the most effective, allowing SC-stabilized emulsions to maintain good kinetic stability over a 30-d period. NaCl destabilized SC-stabilized emulsions but had no significant effect on HA-SC emulsions. In summary, HA concentration had a significant effect on the stability of SC-stabilized emulsions. HA altered the rheological properties and reduced creaming and coalescence by forming a three-dimensional network structure, increasing the electrostatic repulsion of the emulsion and the adsorption capacity of SC at the oil-water interface, and thereby improving the stability of SC-stabilized emulsions during storage and in the presence of NaCl.


Assuntos
Caseínas , Cloreto de Sódio , Emulsões/química , Caseínas/química , Polissacarídeos Bacterianos/química , Água/química
3.
J Colloid Interface Sci ; 566: 257-264, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32007737

RESUMO

Hard carbon is regarded as one of the most promising anode material for sodium-ion batteries in virtue of the low cost and stable framework. However, the correlation between pore structures of hard carbon and sodium-ion storage is still ambiguous. In this work, based on precise control of pore-size distribution, the capacity, ion diffusion, and initial Coulombic efficiency were improved. Meanwhile, the relationship between pore structure and capacity was investigated. Our result indicates that the micropores hinder ion diffusion and hardly ever accommodate Na+ ions, while mesopores facilitate Na+ ion intercalation. Hard carbon with negligible micropores and abundant mesopores delivers a maximum capacity of 283.7 mAh g-1 at 20 mA g-1, which is 83% higher than that of micropore-rich one. Even after 320 cycles at 200 mA g-1, the capacity still remains 189.4 mAh g-1.

4.
Small ; 16(15): e1902843, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31550082

RESUMO

Developing electrochemical energy storage devices with high energy-power densities, long cycling life, as well as low cost is of great significance. Sodium-ion capacitors (NICs), with Na+ as carriers, are composed of a high capacity battery-type electrode and a high rate capacitive electrode. However, unlike their lithium-ion analogues, the research on NICs is still in its infancy. Rational material designs still need to be developed to meet the increasing requirements for NICs with superior energy-power performance and low cost. In the past few years, various materials have been explored to develop NICs with the merits of superior electrochemical performance, low cost, good stability, and environmental friendliness. Here, the material design strategies for sodium-ion capacitors are summarized, with focus on cathode materials, anode materials, and electrolytes. The challenges and opportunities ahead for the future research on materials for NICs are also proposed.

5.
Nanomaterials (Basel) ; 9(5)2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100878

RESUMO

Sodium-ion capacitors (NICs) are considered an important candidate for large-scale energy storage in virtue of their superior energy-power properties, as well as availability of rich Na+ reserves. To fabricate high-performance NIC electrode material, a hydrothermal method was proposed to synthesize sulfur-doped reduced graphene oxide (SG), which exhibited unique layered structures and showed excellent electrochemical properties with 116 F/g capacitance at 1 A/g as the cathode of NICs from 1.6 V to 4.2 V. At the power-energy density over 5000 W/kg, the SG demonstrated over 100 Wh/kg energy density after 3500 cycles, which indicated its efficient durability and superior power-energy properties. The addition of a sulfur source in the hydrothermal process led to the higher specific surface area and more abundant micropores of SG when compared with those of reduced graphene oxide (rGO), thus SG exhibited much better electrochemical properties than those shown by rGO. Partially substituting surface oxygen-containing groups of rGO with sulfur-containing groups also facilitated the enhanced sodium-ion storage ability of SG by introducing sufficient pseudocapacitance.

6.
Small ; 14(35): e1801832, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30066386

RESUMO

Storing more energy in a limited device area is very challenging but crucial for the applications of flexible and wearable electronics. Metal vanadates have been regarded as a fascinating group of materials in many areas, especially in lithium-ion storage. However, there has not been a versatile strategy to synthesize flexible metal vanadate hybrid nanostructures as binder-free anodes for Li-ion batteries so far. A convenient and versatile synthesis of Mx Vy Ox+2.5y @carbon cloth (M = Mn, Co, Ni, Cu) composites is proposed here based on a two-step hydrothermal route. As-synthesized products demonstrate hierarchical proliferous structure, ranging from nanoparticles (0D), and nanobelts (1D) to a 3D interconnected network. The metal vanadate/carbon hybrid nanostructures exhibit excellent lithium storage capability, with a high areal specific capacity up to 5.9 mAh cm-2 (which equals to 1676.8 mAh g-1 ) at a current density of 200 mA g-1 . Moreover, the nature of good flexibility, mixed valence states, and ultrahigh mass loading density (over 3.5 mg cm-2 ) all guarantee their great potential in compact energy storage for future wearable devices and other related applications.

7.
J Colloid Interface Sci ; 528: 208-224, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29857252

RESUMO

Activated carbon (AC) based supercapacitors exhibit intrinsic advantages in energy storage. Traditional two-step synthesis (carbonization and activation) of AC faces difficulties in precisely regulating its pore-size distribution and thoroughly removing residual impurities like silicon oxide. This paper reports a novel coupled ultrasonication-milling (CUM) process for the preparation of hierarchically porous carbon (HPC) using corn cobs as the carbon resource. The as-obtained HPC is of a large surface area (2288 m2 g-1) with a high mesopore ratio of ∼44.6%. When tested in a three-electrode system, the HPC exhibits a high specific capacitance of 465 F g-1 at 0.5 Ag-1, 2.7 times higher than that (170 F g-1) of the commercial AC (YP-50F). In the two-electrode test system, the HPC device exhibits a specific capacitance of 135 F g-1 at 1 A g-1, twice higher than that (68 F g-1) of YP-50F. The above excellent energy-storage properties are resulted from the CUM process which efficiently removes the impurities and modulates the mesopore/micropore structures of the AC samples derived from the agricultural resides of corn cobs. The CUM process is an efficient method to prepare high-performance biomass-derived AC materials.


Assuntos
Carbono/química , Capacitância Elétrica , Nanoestruturas/química , Zea mays/química , Eletrodos , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Porosidade , Sonicação/métodos
8.
Adv Sci (Weinh) ; 5(1): 1700334, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29375965

RESUMO

Graphene nanodots (GNDs) are one of the most attractive graphene nanostructures due to their tunable optoelectronic properties. Fabricated by polystyrene-nanosphere lithography, uniformly sized graphene nanodots array (GNDA) is constructed as an ultraviolet photodetector (PD) with ZnO nanofilm spin coated on it. The size of GNDA can be well controlled from 45 to 20 nm varying the etching time. It is revealed in the study that the photoelectric properties of ZnO/GNDA PD are highly GNDA size-dependent. The highest responsivity (R) and external quantum efficiency of ZnO/GNDA (20 nm) PD are 22.55 mA W-1 and 9.32%, almost twofold of that of ZnO PD. Both ZnO/GNDA (20 nm) PD and ZnO/GNDA (30 nm) PD exhibit much faster response speed under on/off switching light and have shorter rise/decay time compared with ZnO PD. However, as the size of GNDA increase to 45 nm, the PD appears poor performance. The size-dependent phenomenon can be explained by the energy band alignments in ZnO/GNDA hybrids. These efforts reveal the enhancement of GNDs on traditional photodetectors with tunable optoelectronic properties and hold great potential to pave a new way to explore the various remarkable photodetection performances by controlling the size of the nanostructures.

9.
Adv Mater ; 29(4)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27748535

RESUMO

Ultrasensitive pressure sensors are constructed with few-layer MoS2 films. As-designed Fabry-Perot (F-P) sensors exhibit nearly synchronous pressure-deflection responses with a very high sensitivity (89.3 nm Pa-1 ), which is three orders of magnitude higher than those of conventional diaphragm materials (e.g., silica, silver films). This kind of F-P sensor may open up new avenues for 2D materials in biomedical and environmental applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...