Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; : 174779, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39009161

RESUMO

Replete with ammonia nitrogen and organic pollutants, landfill leachate typically undergoes treatment employing expensive and carbon-intensive integrated techniques. We propose a novel microalgae technology for efficient, low-carbon simultaneous treatment of carbon, nitrogen, and phosphorus in landfill leachate (LL). The microbial composition comprises a mixed microalgae culture with Chlorella accounting for 82.58 %. After seven days, the process with an N/P ratio of approximately 14:1 removed 98.81 % of NH4+-N, 88.62 % of TN, and 99.55 % of TP. Notably, the concentrations of NH4+-N and TP met the discharge standards, while the removal rate of NH4+-N was nearly three times higher than previously reported in relevant studies. The microalgae achieved a removal efficiency of 64.27 % for Total Organic Carbon (TOC) and 99.26 % for Inorganic Carbon (IC) under mixotrophic cultivation, yielding a biomass of 1.18 g/L. The treatment process employed in this study results in a carbon emissions equivalent of -8.25 kgCO2/kgNremoved, representing a reduction of 33.56 kgCO2 compared to the 2AO + MBR process. In addition, shake flask experiments were conducted to evaluate the biodegradability of leachate after microalgae treatment. After microalgae treatment, the TOCB (Biodegradable Total Organic Carbon)/TOC ratio decreased from 56.54 % to 27.71 %, with no significant improvement in biodegradability. It establishes a fundamental foundation for further applied research in microalgae treatment of leachate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...