Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38391965

RESUMO

Cell segmentation is an important task in the field of image processing, widely used in the life sciences and medical fields. Traditional methods are mainly based on pixel intensity and spatial relationships, but have limitations. In recent years, machine learning and deep learning methods have been widely used, providing more-accurate and efficient solutions for cell segmentation. The effort to develop efficient and accurate segmentation software tools has been one of the major focal points in the field of cell segmentation for years. However, each software tool has unique characteristics and adaptations, and no universal cell-segmentation software can achieve perfect results. In this review, we used three publicly available datasets containing multiple 2D cell-imaging modalities. Common segmentation metrics were used to evaluate the performance of eight segmentation tools to compare their generality and, thus, find the best-performing tool.


Assuntos
Processamento de Imagem Assistida por Computador , Software , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina
2.
Int J Mol Sci ; 24(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37894715

RESUMO

Flower color is a key ornamental trait in plants. The petals of Gloriosa superba 'Rothschildiana' petals undergo a color transformation from yellow to red during their development, but the molecular mechanism of this process remains unexplored. This study examines the anthocyanin profiles and gene expression patterns of 'Rothschildiana' petals across four developmental stages: bud (S1), initial opening (S2), half opening (S3), and full opening stage (S4). A total of 59 anthocyanins were identified with significant increases in cyanidin-3,5-O-diglucoside, cyanidin-3-O-glucoside, pelargonidin-3-O-glucoside, and pelargonidin-3,5-O-diglucoside levels observed during petal maturation. Transcriptome analysis revealed 46 differentially expressed genes implicated in flavonoid and anthocyanin biosynthesis. Additionally, three gene modules were found to be associated with anthocyanin accumulation throughout flower development. Expression levels of genes associated with auxin, abscisic acid, brassinosteroid signaling, and transcription factors such as NACs and WRKYs underwent significant changes and exhibited strong correlations with several flavonoid and anthocyanin biosynthetic genes in these modules. These findings offer novel insights into the molecular underpinnings of flower color variation and lay the groundwork for the improvement of G. superba.


Assuntos
Antocianinas , Pigmentação , Pigmentação/genética , Perfilação da Expressão Gênica , Metaboloma , Glucosídeos/metabolismo , Flores/metabolismo , Transcriptoma , Regulação da Expressão Gênica de Plantas
3.
Proc Natl Acad Sci U S A ; 120(40): e2302361120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37738291

RESUMO

The almost simultaneous emergence of major animal phyla during the early Cambrian shaped modern animal biodiversity. Reconstructing evolutionary relationships among such closely spaced branches in the animal tree of life has proven to be a major challenge, hindering understanding of early animal evolution and the fossil record. This is particularly true in the species-rich and highly varied Mollusca where dramatic inconsistency among paleontological, morphological, and molecular evidence has led to a long-standing debate about the group's phylogeny and the nature of dozens of enigmatic fossil taxa. A critical step needed to overcome this issue is to supplement available genomic data, which is plentiful for well-studied lineages, with genomes from rare but key lineages, such as Scaphopoda. Here, by presenting chromosome-level genomes from both extant scaphopod orders and leveraging complete genomes spanning Mollusca, we provide strong support for Scaphopoda as the sister taxon of Bivalvia, revitalizing the morphology-based Diasoma hypothesis originally proposed 50 years ago. Our molecular clock analysis confidently dates the split between Bivalvia and Scaphopoda at ~520 Ma, prompting a reinterpretation of controversial laterally compressed Early Cambrian fossils, including Anabarella, Watsonella, and Mellopegma, as stem diasomes. Moreover, we show that incongruence in the phylogenetic placement of Scaphopoda in previous phylogenomic studies was due to ancient incomplete lineage sorting (ILS) that occurred during the rapid radiation of Conchifera. Our findings highlight the need to consider ILS as a potential source of error in deep phylogeny reconstruction, especially in the context of the unique nature of the Cambrian Explosion.


Assuntos
Bivalves , Animais , Filogenia , Biodiversidade , Movimento Celular , Suplementos Nutricionais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...