Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 44(1): 88-101, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32677712

RESUMO

Germination is a plant developmental process by which radicle of mature seeds start to penetrate surrounding barriers for seedling establishment and multiple environmental factors have been shown to affect it. Little is known how high salinity affects seed germination of C4 plant, Zea mays. Preliminary germination assay suggested that isolated embryo alone was able to germinate under 200 mM NaCl treatment, whereas the intact seeds were highly repressed. We hypothesized that maize endosperm may function in perception and transduction of salt signal to surrounding tissues such as embryo, showing a completely different response to that in Arabidopsis. Since salt response involves ABA, we analysed in vivo ABA distribution and quantity and the result demonstrated that ABA level in isolated embryo under NaCl treatment failed to increase in comparison with the water control, suggesting that the elevation of ABA level is an endosperm dependent process. Subsequently, by using advanced profiling techniques such as RNA sequencing and SWATH-MS-based quantitative proteomics, we found substantial differences in post-transcriptional and translational changes between salt-treated embryo and endosperm. In summary, our results indicate that these regulatory mechanisms, such as alternative splicing, are likely to mediate early responses to salt stress during maize seed germination.


Assuntos
Sementes/metabolismo , Cloreto de Sódio/metabolismo , Zea mays/genética , Ácido Abscísico/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiologia , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteoma , Estresse Salino , Sementes/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
2.
Ying Yong Sheng Tai Xue Bao ; 31(5): 1607-1616, 2020 May.
Artigo em Chinês | MEDLINE | ID: mdl-32530239

RESUMO

Soil organic carbon (SOC) is the dynamic medium of carbon transfer and the main pathway of carbon transfer in the karst ecosystem. SOC and its components are the important parts in soil carbon cycling of karst ecosystem. However, few studies have focused on SOC and its components in the karst ecosystem. We analyzed the effects of land use change on the SOC content, SOC reserve (SOCS), water-soluble organic carbon (WSOC), easily oxidizable organic carbon (EOC), particu-late organic carbon (POC), and light fraction organic carbon (LFOC), and heavy fraction organic carbon (HFOC) and their distribution ratio, with six different land-use patterns [Zanthoxylum bungeanum forest (HJ), Hylocereus undulates forest (HL), mixed forest of Z. bungeanum and H. undulates (HHL), Sabina chinensis forest (YB), mixed forest of S. chinensis and Ligustrum luci-dum (YBN), and slope cropland (PD)] in Huajiang Canyon of Guanling County, Guizhou Pro-vince. Results showed that SOC and SOCS in YB, YBN and HJ were significantly higher than those in HL, HHL and PD. In the 0-20 cm soil layer, the concentrations of SOCS followed the order of HJ>YB>YBN>PD>HHL>HL. Contents of WSOC, EOC, POC, LFOC and HFOC in YB, YBN, and HJ were all higher than those in the other three patterns. Significant positive correlations existed between SOC and each of its components (WSOC, EOC, POC, LFOC and HFOC), also between any two of those components. Z. bungeanum could be used as a priority economic species for the ecological rehabilitation of karst rocky desertification and mountain agriculture development in Southwest China. WSOC, EOC, POC, LFOC and HFOC could be used as indicators of soil organic carbon pool.


Assuntos
Carbono , Solo , China , Conservação dos Recursos Naturais , Ecossistema
3.
Planta ; 249(2): 583-600, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30317439

RESUMO

MAIN CONCLUSION: This study systematically identifies plant SYF2/NTC31/p29 genes from 62 plant species by a combinatory bioinformatics approach, revealing the importance of this gene family in phylogenetics, duplication, transcriptional, and post-transcriptional regulation. Alternative splicing is a post-transcriptional regulatory mechanism, which is critical for plant development and stress responses. The entire process is strictly attenuated by a complex of splicing-related proteins, designated splicing factors. Human p29, also referred to as synthetic lethal with cdc forty 2 (SYF2) or the NineTeen complex 31 (NTC31), is a core protein found in the NTC complex of humans and yeast. This splicing factor participates in a variety of biological processes, including DNA damage repair, control of the cell cycle, splicing, and tumorigenesis. However, its function in plants has been seldom reported. Thus, we have systematically identified 89 putative plant SYF2s from 62 plant species among the deposited entries in the Phytozome database. The phylogenetic relationships and evolutionary history among these plant SYF2s were carefully examined. The results revealed that plant SYF2s exhibited distinct patterns regarding their gene structure, promoter sequences, and expression levels, suggesting their functional diversity in response to developmental cues or stress treatments. Although local duplication events, such as tandem duplication and retrotransposition, were found among several plant species, most of the plant species contained only one copy of SYF2, suggesting the existence of additional mechanisms to confer duplication resistance. Further investigation using the model dicot and monocot representatives Arabidopsis and rice SYF2s indicated that the splicing pattern and resulting protein isoforms might play an alternative role in the functional diversity.


Assuntos
Genes de Plantas/genética , Plantas/genética , Sítios de Splice de RNA/genética , Arabidopsis/genética , Sequência Conservada/genética , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Filogenia , Regiões Promotoras Genéticas/genética , Mutações Sintéticas Letais/genética , Sequências de Repetição em Tandem/genética
4.
J Exp Bot ; 70(3): 817-833, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30535157

RESUMO

Post-transcriptional mechanisms (PTMs), including alternative splicing (AS) and alternative translation initiation (ATI), may explain the diversity of proteins involved in plant development and stress responses. Transcriptional regulation is important during the hypoxic germination of rice seeds, but the potential roles of PTMs in this process have not been characterized. We used a combination of proteomics and RNA sequencing to discover how AS and ATI contribute to plant responses to hypoxia. In total, 10 253 intron-containing genes were identified. Of these, ~1741 differentially expressed AS (DAS) events from 811 genes were identified in hypoxia-treated seeds compared with controls. Over 95% of these were not present in the list of differentially expressed genes. In particular, regulatory pathways such as the spliceosome, ribosome, endoplasmic reticulum protein processing and export, proteasome, phagosome, oxidative phosphorylation, and mRNA surveillance showed substantial AS changes under hypoxia, suggesting that AS responses are largely independent of transcriptional regulation. Considerable AS changes were identified, including the preferential usage of some non-conventional splice sites and enrichment of splicing factors in the DAS data sets. Taken together, these results not only demonstrate that AS and ATI function during hypoxic germination but they have also allowed the identification of numerous novel proteins/peptides produced via ATI.


Assuntos
Processamento Alternativo , Germinação/genética , Oryza/crescimento & desenvolvimento , Biossíntese de Proteínas , Anaerobiose , Oryza/genética , Oxigênio/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/fisiologia
5.
Plant Methods ; 14: 69, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30123314

RESUMO

BACKGROUND: The next-generation sequencing (NGS) technology has greatly facilitated genomic and transcriptomic studies, contributing significantly in expanding the current knowledge on genome and transcriptome. However, the continually evolving variety of sequencing platforms, protocols and analytical pipelines has led the research community to focus on cross-platform evaluation and standardization. As a NGS pioneer in China, the Beijing Genomics Institute (BGI) has announced its own NGS platform designated as BGISEQ-500, since 2016. The capability of this platform in large-scale DNA sequencing and small RNA analysis has been already evaluated. However, the comparative performance of BGISEQ-500 platform in transcriptome analysis remains yet to be elucidated. The Illumina series, a leading sequencing platform in China's sequencing market, would be a preferable reference to evaluate new platforms. METHODS: To this end, we describe a cross-platform comparative study between BGISEQ-500 and Illumina HiSeq4000 for analysis of Arabidopsis thaliana WT (Col 0) transcriptome. The key parameters in RNA sequencing and transcriptomic data processing were assessed in biological replicate experiments, using aforesaid platforms. RESULTS: The results from the two platforms BGISEQ-500 and Illumina HiSeq4000 shared high concordance in both inter- (correlation, 0.88-0.93) and intra-platform (correlation, 0.95-0.98) comparison for gene quantification, identification of differentially expressed genes and alternative splicing events. However, the two platforms yielded highly variable interpretation results for single nucleotide polymorphism and insertion-deletion analysis. CONCLUSION: The present case study provides a comprehensive reference dataset to validate the capability of BGISEQ-500 enabling it to be established as a competitive and reliable platform in plant transcriptome analysis.

6.
Plant J ; 94(4): 612-625, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29495079

RESUMO

Rice (Oryza sativa L.) has two ecotypes, upland and lowland rice, that have been observed to show different tolerance levels under flooding stress. In this study, two rice cultivars, upland (Up221, flooding-intolerant) and lowland (Low88, flooding-tolerant), were initially used to study their molecular mechanisms in response to flooding germination. We observed that variations in the OsCBL10 promoter sequences in these two cultivars might contribute to this divergence in flooding tolerance. Further analysis using another eight rice cultivars revealed that the OsCBL10 promoter could be classified as either a flooding-tolerant type (T-type) or a flooding-intolerant type (I-type). The OsCBL10 T-type promoter only existed in japonica lowland cultivars, whereas the OsCBL10 I-type promoter existed in japonica upland, indica upland and indica lowland cultivars. Flooding-tolerant rice cultivars containing the OsCBL10 T-type promoter have shown lower Ca2+ flow and higher α-amylase activities in comparison to those in flooding-intolerant cultivars. Furthermore, the OsCBL10 overexpression lines were sensitive to both flooding and hypoxic treatments during rice germination with enhanced Ca2+ flow in comparison to wild-type. Subsequent findings also indicate that OsCBL10 may affect OsCIPK15 protein abundance and its downstream pathways. In summary, our results suggest that the adaptation to flooding stress during rice germination is associated with two different OsCBL10 promoters, which in turn affect OsCBL10 expression in different cultivars and negatively affect OsCIPK15 protein accumulation and its downstream cascade.


Assuntos
Adaptação Fisiológica , Calcineurina/metabolismo , Cálcio/metabolismo , Oryza/genética , Regiões Promotoras Genéticas/genética , Calcineurina/genética , Ecótipo , Inundações , Variação Genética , Germinação , Oryza/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Sementes/genética , Sementes/fisiologia , Especificidade da Espécie , Estresse Fisiológico
7.
J Sci Food Agric ; 96(5): 1764-71, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-26031390

RESUMO

BACKGROUND: During the production of early hybrid rice seed, the seeds dehydrated slowly and retained high moisture levels when rainy weather lasted for a couple of days, and the rice seeds easily occurred pre-harvest sprouting (PHS) along with high temperature. Therefore it is necessary to harvest the seeds before the PHS occurred. RESULTS: The seeds of hybrid rice (Oryza sativa L. subsp. indica) cv. Qianyou No1 that harvests from 19 to 28 days after pollination (DAP) all had high seed vigour. The seed moisture content at 10 DAP was 36.1%, and declined to 28.6% at 19 DAP; the contents of soluble sugar and total starch increased significantly with the development of seeds. The soluble protein content, the level of abscisic acid (ABA) and gibberellin (GA3 ), and ascorbate peroxidase (APX) activity continued to decrease from 10 DAP to 19 DAP. The seeds at 19 DAP had the highest peroxidase (POD) activity and lowest catalase (CAT) activity while the superoxide dismutase (SOD) activity had no significant difference among the different developing periods. The relative expressions of genes 64S Hsp18.0 and Os03g0267200 transcripts increased significantly from 10 to 19 DAP, and then decreased. However, no significant change was recorded in soluble protein, sugar and GA3 after 16 DAP, and they all significantly correlated with seed viability and vigour during the process of seed maturity. CONCLUSION: The seeds of hybrid rice Qianyou No1 had a higher viability and vigour when harvested from 19 DAP to 28 DAP, the transcription levels of 64S Hsp18.0 and Os03g0267200 increased significantly from 10 DAP to 19 DAP and the highest value was recorded at 19 DAP. The seeds could be harvested as early as 19 DAP without negative influence on seed vigour and viability.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Germinação/fisiologia , Proteínas de Choque Térmico/metabolismo , Oryza/genética , Oryza/fisiologia , Sementes/metabolismo , Ácido Abscísico/metabolismo , Giberelinas/metabolismo , Proteínas de Choque Térmico/genética , Hibridização Genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...