Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4992, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862519

RESUMO

It has been previously shown that devices based on microbial biofilms can generate hydrovoltaic energy from water evaporation. However, the potential of hydrovoltaic energy as an energy source for microbial growth has remained unexplored. Here, we show that the electroautotrophic bacterium Rhodopseudomonas palustris can directly utilize evaporation-induced hydrovoltaic electrons for growth within biofilms through extracellular electron uptake, with a strong reliance on carbon fixation coupled with nitrate reduction. We obtained similar results with two other electroautotrophic bacterial species. Although the energy conversion efficiency for microbial growth based on hydrovoltaic energy is low compared to other processes such as photosynthesis, we hypothesize that hydrovoltaic energy may potentially contribute to microbial survival and growth in energy-limited environments, given the ubiquity of microbial biofilms and water evaporation conditions.


Assuntos
Biofilmes , Rodopseudomonas , Água , Biofilmes/crescimento & desenvolvimento , Rodopseudomonas/metabolismo , Rodopseudomonas/crescimento & desenvolvimento , Água/química , Água/metabolismo , Fotossíntese , Elétrons , Ciclo do Carbono , Nitratos/metabolismo , Fontes de Energia Bioelétrica/microbiologia
2.
Anal Chim Acta ; 1305: 342589, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38677843

RESUMO

Erythromycin (Ery) is a commonly used antibiotic that can be found ubiquitously in water bodies. The increasing apprehension over the adverse effects of antibiotic remnants in aquatic environments necessitates the prompt advancement of erythromycin detection techniques that are both highly sensitive and compact. Here, we propose a non-enzyme Ery sensor that integrates a mesoporous SiO2-based low-voltage oxide electric-double-layer transistor (EDLT) with a molecular imprinting technique, featuring a molecularly imprinted polymers (MIP) functionalized gate electrode. The mesoporous SiO2-based oxide transistor exhibits excellent electrical characteristics, including an operating voltage of small than 1.0 V, an on/off ratio exceeding 106 and a mobility of 14.95 cm2V-1s-1. At an ultra-low operating voltage within 0.5 V, the sensor exhibits a linear response to the concentration range of 1 nM-10 µM of Ery, with a detection limit of 0.22 nM and a sensitivity of 23.3 mV dec-1. Besides, the single-spike dynamic sensing mode effectively reduces the power consumption of the detection. The proposed sensor provides a rapid and convenient approach to detect Ery in aqueous environments, with benefits such as miniaturization, high sensitivity, and simplicity.

3.
Carbohydr Polym ; 326: 121649, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142083

RESUMO

The sensing mechanisms of common humidity sensors related to conductive active materials, which can be simply attributed to the variations in resistivity due to the separation of conductive materials and variations in polymer permittivity, are generally plagued by drawbacks such as cumbersome fabrication processes, high cost and low performance. Herein, we prepared Zn/Cellulose filter paper (CFP)/Nanoscale carbon ink (NCI)/Cu structure humidity power generators (ZHGs) based on the power generation principle of typical zinc-air batteries, using active metals with strong conductivity as electrodes, and the redox reactions that took place in the zinc-air battery can convert the chemical energy in the electrode into a stable electrical energy. The ZHG fabricated in this work can reach an extremely high open circuit voltage (Voc) of 0.803 V at 97 % RH and possesses an excellent power density of 312.24 µW/cm2, which has a good linear relationship (R2 = 0.9669) over a wide humidity range (20-97 % RH). In addition, 10 ZHGs in series can charge commercial capacitors up to 3.83 V. Finally, the proof of concept demonstrated that the humidity power generation sensor can be well applied in human respiratory monitoring, finger non-contact switch, and power supply for light emitting diode (LED).

4.
Biosens Bioelectron ; 247: 115924, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38147715

RESUMO

Noncontact sensing technology plays a vital role in the intelligent human-machine interface, as the essential medium for exchanging information between human and electronic devices. To date, several inorganic materials-based noncontact sensing techniques have been used to accurately detect touch, electrical property, and physical motion. However, limited available materials, dependence on additional power supplies, and poor power production performance, have seriously obstructed the practical applications of noncontact sensing technology. Here, we developed simple self-powered noncontact sensors (SNSs) assembled using a typical G. sulfurreducens biofilm as the core component. In noncontact mode, the sensor demonstrated excellent self-powered sensing performance with maximum voltage output of 10 V and a current of 60 nA, a maximum sensing range of 40 cm which is the farthest reported to date. Depending on its excellent sensing characteristic, the SNSs was used to monitor human breathing in this work. Furthermore, an array of united SNSs was able to localize external electric fields and effectively extend the sensing area by increasing the number of devices. Compared to traditional inorganic materials, microbial biofilms have the advantages of wide existence, self-proliferation, low cost, environmental friendliness, and ultra-fast self-healing property (seconds level). The proposed biofilm SNSs in our work provides new insights for noncontact power generation of biomaterials and self-driven sensing.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Humanos , Fontes de Energia Elétrica , Nanotecnologia , Biofilmes
5.
J Phys Chem Lett ; 14(49): 11015-11021, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38047741

RESUMO

To satisfy the demands of photodetectors for weak-light detection, materials selected for device fabrication should have an extremely low background carrier concentration to suppress the dark current of devices. In this work, a new quasi-two-dimensional CsGaGeSe4 single crystal with an extremely low background carrier concentration was synthesized by a co-solvent reaction based on which a photoconductive detector was prepared with an ultralow dark current density (6 fA at 1 V and ∼10-10 A cm-2) and a high response speed (∼0.74 s) was achieved, presenting a great potential of being applied to the field of weak-light detection. The ultralow dark current density originates from both the good crystal quality and the strongly asymmetric band structure of CsGaGeSe4. In the darkness, electrons locally bound in the valence band bring an ultralow dark current density; after illumination, the electrons transiting to the conduction band will participate in the conduction in a non-localized state, resulting in a high signal-to-noise ratio. This work not only provides a new choice of potential materials for weak-light detection but also proposes an effective strategy for material selection.

6.
Carbohydr Polym ; 318: 121139, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37479446

RESUMO

Cellulose and its derivatives, which are low-cost, degradable, reproducible and highly hydrophilic, can serve as both substrate and humidity sensitive materials, making them more and more popular as ideal biomimetic materials for humidity sensors. Benefiting from these characteristics, cellulose-based humidity sensors cannot only exhibit high sensitivity, excellent mechanical performance, wide humidity response range, etc., but also can be applied to fields such as human health, medical care and agricultural product safety monitoring. Herein, cellulose-based humidity sensors are first classified according to the different conductive active materials, such as carbon nanotubes, graphene, electrolytes, metal compounds, and polymer materials, based on which the latest research progress is introduced, and the roles of different types of conductive materials in cellulose-based humidity sensors are analyzed and summarized. Besides, the similarities and differences in their working mechanisms are expounded. Finally, the application scenarios of cellulose-based humidity sensors in human movement respiration and skin surface humidity monitoring are discussed, which can make readers quickly familiarize the current preparation method, working mechanism and subsequent development trend of cellulose-based humidity sensors more effectively.

7.
ACS Appl Mater Interfaces ; 15(31): 37649-37657, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37490695

RESUMO

Rare-earth oxide Sm2O3 is theoretically expected to be used in the preparation of ultraviolet (UV) detectors with low dark currents and high radiation resistance due to its characteristics of a wide bandgap, a high dielectric constant, and high chemical stability. However, certain features that rare-earth oxides possess, such as high resistivity and weak photoelectric response currents, have hindered relevant research on these kinds of materials in the field of UV detection. In this work, a p-Gr/i-Sm2O3/n-SiC heterojunction photovoltaic solar-blind UV sensor was constructed for the first time. Because of the high mobility of graphene (Gr) and the contribution of double built-in electric fields in the heterojunction, the collection efficiency of photogenerated carriers has been greatly improved, with the typical shortcomings of high resistivity and poor photoelectric response performance of rare-earth oxides having been overcome. This detector has exhibited outstanding performance at 0 V, including a responsivity of 19.8 mA/W and an open-circuit voltage of 0.68 V. Additionally, this detector has a detectivity as high as 1.2 × 1011 jones, which is at the front position of most ultraviolet detectors. The fabrication of this high-performance Sm2O3-based photovoltaic UV detector has broadened the application fields of rare-earth oxide semiconductors. Therefore, this project has important value for future research in relevant fields.

8.
Trends Biotechnol ; 41(9): 1155-1167, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37085401

RESUMO

Hydrovoltaic electricity generation (HEG) utilizes the latent environmental heat stored in water, and subsequently harvests the electrical energy. However, sustainable HEG has remained extremely challenging due either to complex fabrication and high cost, or to restricted environmental compatibility and renewability. Electroactive microorganisms are environmentally abundant and viable in performing directional electron transport to produce currents. These distinctive features have inspired microbial HEG systems that can convert environmental energy into hygroelectricity upon water circulation from raindrops, waves, and water moisture, and has recently succeeded as proof of concept for becoming a cutting-edge biotechnology. In this review, recent advances in microbial biofilm-based hydrovoltaic technology are highlighted to better understand a promising method of electricity generation from environmental energy with the aim of practical applications.


Assuntos
Fontes de Energia Bioelétrica , Eletricidade , Biotecnologia/métodos , Biofilmes , Elétrons , Eletrodos
9.
Research (Wash D C) ; 2022: 9873203, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36082209

RESUMO

Hygroelectricity generators (HEGs) utilize the latent heat stored in environmental moisture for electricity generation, but nevertheless are showing relatively low power densities due to their weak energy harvesting capacities. Inspired by epiphytes that absorb ambient moisture and concurrently capture sunlight for dynamic photosynthesis, we propose herein a scenario of all-biobased hydrovoltaic-photovoltaic electricity generators (HPEGs) that integrate photosystem II (PSII) with Geobacter sulfurreducens (G.s) for simultaneous energy harvesting from both moisture and sunlight. This proof of concept illustrates that the all-biobased HPEG generates steady hygroelectricity induced by moisture absorption and meanwhile creates a photovoltaic electric field which further strengthens electricity generation under sunlight. Under environmental conditions, the synergic hydrovoltaic-photovoltaic effect in HPEGs has resulted in a continuous output power with a high density of 1.24 W/m2, surpassing all HEGs reported hitherto. This work thus provides a feasible strategy for boosting electricity generation via simultaneous energy harvesting from ambient moisture and sunlight.

10.
Sci Adv ; 8(15): eabm8047, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35417246

RESUMO

Water evaporation-induced electricity generators (WEGs) have recently attracted extensive research attention as an emerging renewable energy-harvesting technology that harvests electricity directly from water evaporation. However, the low power output, limited available material, complicated fabrication process, and extremely high cost have restricted wide applications of this technology. Here, a facile and efficient WEG prototype based on Geobacter sulfurreducens biofilm was demonstrated. The device can generate continuous electric power with a maximum output power density of ~685.12 µW/cm2, which is two orders of magnitude higher than that of previously reported analogous devices. The superior performance of the device is attributed to the intrinsic properties of the G. sulfurreducens biofilm, including its hydrophilicity, porous structure, conductivity, etc. This study not only presents the unprecedented evaporating potential effect of G. sulfurreducens biofilms but also paves the way for developing hydrovoltaic technology with biomaterials.

11.
ACS Appl Mater Interfaces ; 13(37): 44568-44576, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34514792

RESUMO

Ga2O3 is a popular material for research on solar-blind ultraviolet detectors. However, its absorption cutoff edge is 253 nm, which is not an ideal cutoff edge of 280 nm. In this work, by adjusting the ratio of In/Ga elements in the films, a high-quality (In0.11Ga0.89)2O3 film with an absorption cutoff edge of 280 nm was obtained, which owns a uniform surface and preferred orientation. On this basis, a solar-blind ultraviolet photovoltaic detector was constructed based on the Pt/(In0.11Ga0.89)2O3/n-Si heterojunction. When the device is exposed to 254 nm UV light, its open-circuit voltage (VOC) can reach 354 mV. Under 0 V bias, the device has a responsivity of 0.48 mA/W with a rise time of 0.47 s and a decay time of 0.37 s; under -7 V bias, the device achieves a responsivity of 16.96 mA/W with a rise time of 0.17 s and a decay time of 0.33 s. The spectral response characteristics of the device show that it has a selective response to solar-blind ultraviolet light (cutoff wavelength is 280 nm) with a rejection ratio (R254 nm/R310 nm), which is greater by more than two orders of magnitude. This work provides a good reference for adjusting the band gap of Ga2O3-based films and broadening their application fields.

12.
Sci Rep ; 5: 11499, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26099568

RESUMO

High quality ZnO nanowires arrays were homoepitaxial grown on Ga-doped ZnO single crystal (GZOSC), which have the advantages of high conductivity, high carrier mobility and high thermal stability. When it was employed as a photoanode in the DSSCs, the cell exhibited a 1.44% power-conversion efficiency under the illumination of one sun (AM 1.5G). The performance is superior to our ZnO nanowires/FTO based DSSCs under the same condition. This enhanced performance is mainly attributed to the perfect interface between the ZnO nanowires and the GZOSC substrate that contributes to lower carrier scattering and recombination rates compared with that grown on traditional FTO substrate.

13.
Biosens Bioelectron ; 56: 243-9, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24508815

RESUMO

Lead contamination is now widespread, and exposure to lead may cause adverse effects on human beings. In this study, a photoelectrochemical sensor based on flower-like ZnO nanostructures was developed for Pb(2+) detection, using a Pb(2+)-dependent DNAzyme as the recognition unit and a double-strand DNA intercalator, Ru(bpy)2(dppz)(2+) (bpy=2,2'-bipyridine, dppz=dipyrido[3,2-a:2',3'-c] phenazine) as the photoelectrochemical signal reporter. The ZnO nanoflower was fabricated on an indium tin oxide (ITO) electrode by the convenient hydrothermal decomposition method. The morphology and photoelectrochemical property of the ZnO nanoflowers were characterized by SEM, XRD and photocurrent measurements. DNAzyme-substrate duplex was assembled on an ITO/ZnO electrode through electrostatic adsorption. In the presence of Pb(2+), RNA-cleavage activity of the DNAzyme was activated and its substrate strand was cleaved, resulting in the release of Ru(bpy)2(dppz)(2+) from the DNA film and the concomitant photocurrent decrease. The detection principle was verified by fluorescence measurements. Under the optimized conditions, a linear relationship between photocurrent and Pb(2+) concentration was obtained over the range of 0.5-20 nM, with a detection limit of 0.1 nM. Interference from other common metal ions was found negligible. Applicability of the sensor was demonstrated by analyzing lead level in human serum and Pb(2+) spiked water samples. This facile and economical sensor system showed high sensitivity and selectivity, thus can be potentially applied for on-site monitoring of lead contaminant.


Assuntos
Técnicas Biossensoriais/instrumentação , DNA Catalítico/química , Técnicas Eletroquímicas/instrumentação , Chumbo/análise , Nanoestruturas/química , Poluentes Químicos da Água/análise , Óxido de Zinco/química , Água Potável/análise , Desenho de Equipamento , Substâncias Intercalantes/química , Lagos/análise , Limite de Detecção , Nanoestruturas/ultraestrutura
14.
Nanoscale ; 4(12): 3665-8, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-22618852

RESUMO

A novel environmentally friendly nano-adsorbent is developed by doping Cu(+) cations into the lattice of ZnS microspheres. The adsorbent shows selective adsorbability for cationic dyes in low concentrations in wastewater. The adsorbed dye could be successfully eluted with alcohol, resulting in a 1000 fold enrichment of the dye solution.


Assuntos
Cobre/química , Corantes Fluorescentes/química , Nanopartículas Metálicas/química , Poluentes Químicos da Água/química , Sulfato de Zinco/química , Adsorção , Cátions/química , Rodaminas/química , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...