Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 7(5): 1484-1494, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35482555

RESUMO

Low-cost and real-time formaldehyde (HCHO) monitoring is of great importance due to its volatility, extreme toxicity, and ready accessibility. In this work, a low-cost and integrated microelectromechanical system (MEMS) HCHO sensor is developed based on SnO2 multishell hollow microspheres loaded with a bimetallic PdPt (PdPt/SnO2-M) sensitizer. The MEMS sensor exhibits a high sensitivity to HCHO ((Ra/Rg - 1) % = 83.7 @ 1 ppm), ultralow detection limit of 50 ppb, and ultrashort response/recovery time (5.0/7.0 s @ 1 ppm). These excellent HCHO sensing properties are attributed to its unique multishell hollow structure with a large and accessible surface, abundant interfaces, suitable mesoporous structure, and synergistic catalytic effects of bimetal PdPt. The well-defined multishell hollow structure also shows fascinating capacities as good hosts for noble metal loading. Therefore, PdPt bimetallic nanoparticles can be employed to construct a synergistic sensitizer with a high content and good dispersity on this multishell hollow structure, further exhibiting a reduced working temperature and ultrasensitive detection of HCHO. This PdPt/SnO2-M-based MEMS sensor presents a unique and highly sensitive means to detect HCHO, establishing its great promise for potential application in environmental monitoring.


Assuntos
Sistemas Microeletromecânicos , Nanopartículas , Formaldeído , Metais/química , Microesferas
2.
Nanomaterials (Basel) ; 11(8)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34443756

RESUMO

In recent years, bimetallic nanocrystals have attracted great interest from many researchers. Bimetallic nanocrystals are expected to exhibit improved physical and chemical properties due to the synergistic effect between the two metals, not just a combination of two monometallic properties. More importantly, the properties of bimetallic nanocrystals are significantly affected by their morphology, structure, and atomic arrangement. Reasonable regulation of these parameters of nanocrystals can effectively control their properties and enhance their practicality in a given application. This review summarizes some recent research progress in the controlled synthesis of shape, composition and structure, as well as some important applications of bimetallic nanocrystals. We first give a brief introduction to the development of bimetals, followed by the architectural diversity of bimetallic nanocrystals. The most commonly used and typical synthesis methods are also summarized, and the possible morphologies under different conditions are also discussed. Finally, we discuss the composition-dependent and shape-dependent properties of bimetals in terms of highlighting applications such as catalysis, energy conversion, gas sensing and bio-detection applications.

3.
Angew Chem Int Ed Engl ; 60(36): 19852-19859, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34180115

RESUMO

The uneven consumption of anions during the lithium (Li) deposition process triggers a space charge effect that generates Li dendrites, seriously hindering the practical application of Li-metal batteries. We report on a cobalt phthalocyanine electrolyte additive with a planar molecular structure, which can be tightly adsorbed on the Li anode surface to form a dense molecular layer. Such a planar molecular layer cannot only complex with Li ions to reduce the space charge effect, but also suppress side reactions between the anode and the electrolyte, producing a stable solid electrolyte interphase composed of amorphous lithium fluoride (LiF) and lithium carbonate (LiCO3 ), as verified by X-ray absorption near-edge spectroscopy. As a result, the Li|Li symmetric cell exhibits excellent cycling stability above 700 h under a high plating capacity of 3 mAh cm-2 . Moreover, the assembled Li|lithium iron phosphate (LiFePO4 , LFP) full-cell can also deliver excellent cycling over 200 cycles under lean electrolyte conditions (3 µL mg-1 ).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...