Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2403111, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934213

RESUMO

Bioelectronics is an exciting field that bridges the gap between physiological activities and external electronic devices, striving for high resolution, high conformability, scalability, and ease of integration. One crucial component in bioelectronics is bioelectrodes, designed to convert neural activity into electronic signals or vice versa. Previously reported bioelectrodes have struggled to meet several essential requirements simultaneously: high-fidelity signal transduction, high charge injection capability, strain resistance, and multifunctionality. This work introduces a novel strategy for fabricating superior bioelectrodes by merging multiple charge-transfer processes. The resulting bioelectrodes offer accurate ion-to-electron transduction for capturing electrophysiological signals, dependable charge injection capability for neuromodulation, consistent electrode potential for artifact rejection and biomolecule sensing, and high transparency for seamless integration with optoelectronics. Furthermore, the bioelectrode can be designed to be strain-insensitive by isolating signal transduction from electron transportation. The innovative concept presented in this work holds great promise for extending to other electrode materials and paves the way for the advancement of multimodal bioelectronics.

2.
Adv Healthc Mater ; 12(24): e2203241, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37222707

RESUMO

Adhesive hydrogels containing quaternary ammonium salt (QAS) moieties have shown attractive advantages in treatment for acute wounds, attributed to their high performances in wound sealing and sterilization. However, the introduction of QAS commonly leads to high cytotoxicity and adhesive deterioration. Herein, aimed to solve these two issues, a self-adaptive dressing with delicate spatiotemporal responsiveness is developed by employing cellulose sulfate (CS) as dynamic layers to coat QAS-based hydrogel. In detail, due to the acid environment of wound in the early stages of healing, the CS coating will quickly detach to expose the active QAS groups for maximum disinfectant efficacy; meanwhile, as the wound gradually heals and recovers to a neutral pH, the CS will remain stable to keep QAS screened, realizing a high cell growth-promoting activity for epithelium regeneration. Additionally, attributed to the synergy of temporary hydrophobicity by CS and slow water absorption kinetics of the hydrogel, the resultant dressing possesses outstanding wound sealing and hemostasis performance. At last, this work anticipates this approach to intelligent wound dressings based on dynamic and responsive intermolecular interaction can also be applied to a wide range of self-adaptive biomedical materials employing different chemistries for applications in medical therapy and health monitoring.


Assuntos
Hidrogéis , Cicatrização , Hidrogéis/farmacologia , Hidrogéis/química , Antibacterianos/farmacologia , Antibacterianos/química , Bandagens , Materiais Biocompatíveis , Adesivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...